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ABSTRACT: Objective: The recent advances in tech-
nology are opening a new opportunity to remotely evalu-
ate motor features in people with Parkinson’s disease
(PD). We hypothesized that typing on an electronic
device, a habitual behavior facilitated by the nigrostriatal
dopaminergic pathway, could allow for objectively and
nonobtrusively monitoring parkinsonian features and
response to medication in an at-home setting.
Methods: We enrolled 31 participants recently diagnosed
with PD who were due to start dopaminergic treatment and
30 age-matched controls. We remotely monitored their typ-
ing pattern during a 6-month (24 weeks) follow-up period
before and while dopaminergic medications were being
titrated. The typing data were used to develop a novel algo-
rithm based on recursive neural networks and detect partici-
pants’ responses to medication. The latter were defined by
the Unified Parkinson’s Disease Rating Scale-III (UPDRS-III)

minimal clinically important difference. Furthermore, we
tested the accuracy of the algorithm to predict the final
response to medication as early as 21 weeks prior to the
final 6-month clinical outcome.
Results: The score on the novel algorithm based on recur-
sive neural networks had an overall moderate kappa
agreement and fair area under the receiver operating char-
acteristic (ROC) curve with the time-coincident UPDRS-III
minimal clinically important difference. The participants
classified as responders at the final visit (based on the
UPDRS-III minimal clinically important difference) had
higher scores on the novel algorithm based on recursive
neural networks when compared with the participants with
stable UPDRS-III, from the third week of the study onward.
Conclusions: This preliminary study suggests that
remotely gathered unsupervised typing data allows for
the accurate detection and prediction of drug response
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Current evaluation standards in Parkinson’s disease
(PD), such as the Unified Parkinson’s Disease Rating
Scale (UPDRS),1 are very useful, but have important
limitations. As recently pointed out, these scales report
a semiquantitative and subjective score, nonsensitive to
subtle motor changes.2-4 In addition, these assessments
typically require the patient to travel to the clinic, and
they need to be performed by a trained specialist, rep-
resenting an additional burden for the patient and
hence being time and cost consuming.
For these reasons, several attempts are underway to

complement traditional standards with more objective,
quantitative, and continuous outcome measures.5,6

Notably, in the recent decades we have been witnessing
an exponential adoption of smart technologies, such as
computers, smartphones, and tablets. This natural interac-
tion with keyboards and touch screens is probably driven
by habitual-directed movements, whose control is regu-
lated by nigro-striatal activity.7-9 Hence, we set to ascer-
tain whether a natural interaction with keyboards would
enable a new method to remotely detect and monitor par-
kinsonian motor signs nonobtrusively by analyzing the
characteristics of free-text typing. Such an approach could
have advantages over existing solutions,10-12 because
(1) it can extract motor information from the natural
interaction of the patients or study participants with their
devices without requiring active collaboration; (2) it could
virtually reach any person who is typing with an internet-
connected device, opening a window on the motor skills
and parkinsonian signs of an enormous number of indi-
viduals; (3) it can acquire data remotely without requiring
to attend a clinic; and (4) participants could be monitored
longitudinally in a quasi-continuous manner.
We have previously shown that data collected from an

in-clinic typing task accurately differentiated early PD
patients from sex- and age-matched healthy controls,13

and replicated this result using at-home, unsupervised
data.14 Recently, we demonstrated similar performance
with data acquired during typing on a touch-screen
smartphone.15 In the present study, our aim is to detect
the response to medication in PD by using remotely gath-
ered, unsupervised typing data in an at-home, everyday-
life setting as an additional step to this new digital care
model. Thus, we designed a prospective naturalistic study
enrolling early PD patients who were going to start dopa-
minergic medication and followed them for 6 months.
The specific goal of this study was to validate a novel
approach applied to remotely gathered typing data for
(1) detecting response to medication in an early PD popu-
lation and (2) predicting which PD patients will respond

to the drugs at the final visit based on the typing data col-
lected at home up to 21 weeks in advance.

Materials and Methods
Study Participants

Between March 2015 and June 2016, 31 consecutive
early PD patients were recruited from 7 hospitals in
Madrid, Spain (Fig. 1), according to prespecified inclusion
and exclusion criteria that are detailed in the Supple-
mentary Materials. A total of 30 age- and sex-matched
healthy controls (HC) were enrolled after ruling out the
existence of parkinsonism, hand deformities, cognitive
impairment, sleep problems, or any other potential con-
founders (eg, use of psychoactive medication, drug abuse,
or a serious medical condition).
The sample sizewas prespecified to detect at least 15 par-

ticipants with response to medication, according to a pre-
vious definition of response (ie, decrease of at least
5 points in the total UPDRS-III score).16 We a priori esti-
mated a responder rate of 50% based on previous infor-
mation from various randomized clinical trials.17-19 For
this, we targeted participants who were prescribed dopa-
mine agonist or levodopa.We did not exclude participants

FIG. 1. Flowchart of the study sample.
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already on rasagiline, but evaluated them off medication.
We expected a negligible confounding motor effect of this
drug based on the main pivotal trials that reported the
UPDRS change at 12 to 36weeks was ≤0.11 points.20

Besides the participants who met the exclusion criteria,
two additional PD participants were excluded from the
final analyses, in one case because the typing data were
insufficient to generate a score, and in the other case
because the participant’s laptop had an operating system
that was not compatible with our software (Fig. 1).
Finally, five participants who got worse based on the defi-
nition of response as described later were also not
included in the model training and typing analyses.
The post hoc evaluation of typing consistency was

done to define the minimum amount of data needed to
obtain a reliable score. For this reason, a typing day
was defined as at least 10 valid windows per day,
where a valid window was represented by a data
sequence of at least 30 keystrokes within 90-second
time interval. Then we defined the “consistent typers”
as participants with at least one typing day in 80% of
every possible 15 days rolling windows during the
entire follow-up period (an overview of typing activity
and consistency is available in Supporting Information
Fig. 1). The analyses were conducted in both consistent
and nonconsistent typers to evaluate the impact of typ-
ing frequency on the method’s diagnostic performance.

Study Design
A summary of the study design can be found in the

Supplementary Materials, Supporting Information Fig. 2,
and in clinicaltrials.gov (NCT02522065). Succinctly, all
of the participants included in the study received a com-
plete evaluation by a movement disorder specialist
(M.M., P.M.E.) at baseline that included the UPDRS-
III, the Purdue Pegboard test, and other standards.
At the baseline visit, the neuroQWERTY software was

installed in the participants’ laptops. The participants
were invited to freely type for at least 20 minutes per
day during the whole duration of the study. The soft-
ware ran in the background of the laptop, capturing the
typing data—press/release timestamps of keystrokes—
that was automatically sent to a remote server located at
Massachusetts Institute of Technology (Boston, Massa-
chusetts). The privacy of the typing data was assured by
encryption of keystroke information, anonymization of
the participants, and authentication for accessing the
data.14

To obtain at-home (off ) baseline typing data before
the participants started the newly prescribed dopaminer-
gic medications, the PD participants were instructed to
delay the start of the new drug 7 days after the initial
baseline visit. Further follow-up visits were scheduled
flexibly at weeks 4, 8, 16, and 24 after starting the medi-
cation with the same assessments that were conducted at

baseline (for further information, see the Supplementary
Materials).

Standard Protocol Approvals
and Patient Consents

All of the experimental protocols were approved by the
Massachusetts Institute of Technology (no. 1412006804),
HM Puerta del Sur University Hospital, Spain (no. 15.
05.796-GHM), 12 de Octubre University Hospital, Spain
(no. CEIC:14/090), and Clínico San Carlos University Hos-
pital, Spain (no.14/136-E). All of the participants provided
written informed consent prior to study enrollment.

Definition of Drug Response: UPDRS-III
Minimal Clinically Important Difference

To classify participants as improved, not changed, or
worsened, we calculated the minimal clinically impor-
tant difference (MCID) of UPDRS-III for this study.21

The relevant cut-off for our cohort was established in
�5 points. There were only five participants who wors-
ened, and they have not been included in the results
(see limitations in the discussion). In terms of response,
we compared those participants who did not change
(UPDRS-III change ranging from −5 to +5 points) to
those participants who improved (UPDRS-III scores
that were lower by more than 5 points at follow-up).

Classification Modeling: neuro QWERTY
Recurrent Neural Network (nQRNN)

We used a machine-learning model (nQRNN) that
receives as input typing features derived from the hold
time, that is, the time required to press and release each
key on a participant’s laptop, regardless of the text typed.
The typing features are encoded as “Key Hold Time Distri-
bution” matrices22 joined with the encoding previously
described.13,14 nQRNN outputs the probability of each
patient of being a responder or nonresponder and were
employed to generate the plots in Figures 2 and 3. nQRNN
architecture is based on hierarchical layers of long short-
term memory units (a type of recurrent neural network)
trained using a nested cross-validation approach to avoid
overfitting and a previously described optimization algo-
rithm known as RMSprop (i.e., Root Mean Square Prop).
This type of software architecture is known to be an effec-
tive predictive model for complex time-series data.23 More
details are available in the SupplementaryMaterials.

Data Analyses
The following two different types of analysis were

performed: (1) the agreement of the nQRNN-based
with the time-coincident UPDRS-III MCID-based classi-
fication of response and (2) the prediction of whether
the patients would be classified as responders or nonre-
sponders at the final visit (according to UPDRS-III
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MCID) based on the at-home nQRNN score obtained
from the previous weekly timepoints throughout the
study. The score was calculated from the third week
after the medication was prescribed onward, when
there was sufficient data to conduct the described ana-
lyses. The analyses were replicated in both consistent
typers and in the whole study cohort. More details on
the analyses conducted are provided in the Supplemen-
tary Materials.

Evaluation of Cognition as Possible
Confounder

To rule out the possible confounding effect of cognition,
we computed the Spearman correlation between the Mon-
treal Cognitive Assessment test (MoCA) score and the
nQRNN score.24,25 Moreover, we analyzed the response
classification of participants who fulfilled the Movement
Disorder Society criteria of PD mild cognitive impairment
according to the results of a complete neuropsychological
battery.26

Data Collection, Database Processing,
and Statistical Analysis

Software characteristics have been previously described.13

Clinical data were collected using the Research Electronic
Data Capture software (REDCap).27 The nQRNN was
developed in the Python28 and Keras framework. Database
processing and statistical analysis were performed using
R 3.3.2.29 Baseline characteristics were compared using a
nonparametric approach (Mann-WhitneyU test for contin-
uous variables and Fisher’s exact test for categorical vari-
ables; multiple group comparisons at baseline were done
using the Kruskal-Wallis test with post hoc pairwise Mann-
Whitney U test in the continuous variables). The compari-
sons between nQRNN scores of the improved and not-
changed groups of the prediction analysis were performed
using the Mann-WhitneyU test. Receiver operating charac-
teristics (ROC) curve analysis was used for the agreement of
at-home nQRNN score with UPDRS-III-based response
classification as well as for the prediction analysis of final
response. Cohen’s κ was used as measure of agreement, and
Cohen’s effect size was calculated for agreement and predic-
tion analyses. Significance was defined as a 2-sided type I
error below the 5%probability.

Results
Comparability and Characterization

of the Studied Cohort
Baseline demographic characteristics were similar

between the PD (N = 29) and HC (N = 30) groups, as
shown in the Table 1. As expected, statistically signifi-
cant differences were observed in the motor perfor-
mance of the PD and controls (eg, UPDRS-III). The
levodopa equivalent daily dose was also statistically dif-
ferent between the 2 groups.
The median MoCA score was 28 (interquartile range

[IQR]: 27-29) in the HC group and 27 (IQR = 26-28)
in the PD group, with one-point difference statistically
significant (P = .049).
Based on the participants’ final response to medica-

tion (HC, PD who improved, and PD who did not
change), further between-group baseline comparisons
were done (Supporting Information Table 1). Overall,
statistically significant differences were observed only in
motor performance–dependent variables. Pairwise com-
parisons found that those differences were the result
of differences between PD participants and HC, as
expected. The only statistically significant difference
between the two PD groups was in the Purdue Assem-
bly task (P = .01).
The median disease duration at recruitment of the PD

group was 13.9 months (IQR = 10.4-32.4). Most of the
PD participants were in stage 2 of Hoehn and Yahr
scale (n = 19/29, 65.5%). The rest were in stage
1 (n = 7/29, 24.1%) or 2.5 (n = 3/29, 10.3%); none of

FIG. 2. The ROC curves of nQRNN for UPDRS–III MCID-based classifi-
cation of responders. The plot shows the ROC curves of the nQRNN for
the binary classification of the patients as “improved” (ie, responders)
and “not changed” according to the MCID of the UPDRS–III. The blue
line is obtained plotting the whole sample of the study. The red line is
obtained plotting only the participants classified as “consistent typers.”
The shaded areas represent the 95% CI. AUC, area under the ROC
curve; CI, confidence interval; MCID, minimal clinically important differ-
ence; nQRNN, novel algorithm based on recursive neural networks;
ROC, receiver operating characteristic; UPDRS-III, Unified Parkinson’s
Disease Rating Scale part III. [Color figure can be viewed at
wileyonlinelibrary.com]
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them were in stages 3, 4 or 5. The tremor-dominant
phenotype of PD was the most frequent (n = 15/29,
51.7%).30 Six PD participants (20.7%) were already
receiving rasagiline at recruitment.
Of the sample, 95% had a 6-month follow-up. Two of

the PD participants and one HC dropped out before the
24-week visit for personal reasons not related to the study.
During the 6-month follow-up, there was a progressive
increase in the median levodopa equivalent daily dose of
the PD group from 0 at baseline to 340 (IQR = 220-400)
at week 24 (Supporting Information Fig. 3).
The number of PD participants who responded to

medication, according to the 5-point UPDRS-III MCID,
increased during the study as the medication was
titrated (Supporting Information Fig. 4). At the final
visit (ie, week 24), the PD participants who responded
to medication were 51.9%. Of the whole sample,
37 (66.1%) participants were consistent typers, includ-
ing 20 (69.0%) controls and 17 (63.0%) PD patients.

Evaluating the Concurrent and Discriminant
Validity of nQRNN

There was a moderate significant correlation (Spearman
ρ = 0.33; P = .02) between nQRNN and the time-
coincident UPDRS-III Δ at the final endpoint visit. The
correlation with different nonmotor measures such as
MoCAwas nonsignificant (Spearman ρ = 0.10; P = .49).

FIG. 3. Longitudinal nQRNN change in consistent typers. The thick lines and shaded areas represent the longitudinal median nQRNN scores and their
interquartile ranges for the Parkinson’s disease patients who were finally classified as “improved” (green line) and for the Parkinson’s disease patients
and controls who were classified as “not changed” (yellow line). The thin lines represent the single participants and their score over time. The gray line
represents the best possible threshold according to the Youden method, computed for each week interval, which maintained a stable value of 0.28
since week seven after starting the medication. nQRNN, novel algorithm based on recursive neural networks. [Color figure can be viewed at
wileyonlinelibrary.com]

TABLE 1. Demographic and baseline characteristics

Group

Variable
Healthy

controls, n = 30 PD patients, n = 29
P

value

Age 63.00 (56.48-69.44) 59.78 (54.19-68.60) .476
Sex, woman 16 (53.3) 14 (48.3) .797
Handedness,
right

28 (93.3) 29 (100.0) .492

Alcohol 8 (26.7) 4 (13.8) .333
Tobacco 3 (10.0) 3 (10.3) 1.000
Hypertension 10 (33.3) 9 (31.0) 1.000
Diabetes
mellitus

5 (16.7) 2 (6.9) .424

Dyslipemia 8 (26.7) 7 (24.1) 1.000
Computer use, y 20.00 (10.00-25.00) 20.00 (12.00-20.00) .982
Weekly
computer use, d

7.00 (5.00-7.00) 7.00 (4.00-7.00) .402

Education, y 15.00 (12.00-18.00) 18.00 (12.00-20.00) .322
MoCA 28.00 (27.00-29.00) 27.00 (26.00-28.00) .049a

LED 0.00 (0.00-0.00) 0.00 (0.00-0.00) .009a

UPDRS-III 1.00 (0.00-2.00) 19.00 (17.00-26.00) <.001a

Purdue right 14.83 (14.00-16.00) 12.33 (11.33-15.33) .003a

Purdue left 13.50 (12.67-15.25) 11.33 (10.67-12.67) <.001a

Purdue both 11.17 (10.67-12.67) 9.00 (8.00-11.00) <.001a

Purdue
assembly

27.67 (23.25-30.00) 24.67 (17.67-29.67) .075

Quantitative variables are represented as “median (interquartile range)” and
qualitative variables as “n (%).” LED, levodopa equivalent dose; MoCA, Mon-
treal Cognitive Assessment test; UPDRS-III, Unified Parkinson’s Disease Rat-
ing Scale part III.
aStatistically significant difference.
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Analyzing the Agreement and Accuracy
of nQRNN to Detect Drug Response

The area under the ROC curve (AUC) for all the aggre-
gated data (ie, all timepoints) to classify the participants
as “improved” or “not changed” using the nQRNN was
0.77 (95% confidence interval, 0.68-0.87) in consistent
typers and 0.75 (95% CI, 0.67-0.84) for the whole sam-
ple (Fig. 2). The κ agreement was moderate for both con-
sistent typers and the whole cohort (0.55 and 0.47,
respectively). A large Cohen’s d effect size was observed
(1.26 for the consistent typers and 0.92 for the whole
sample). The overall balanced accuracy was 76.5% in
the whole sample and 77.4% in the consistent typers.
Supporting Information Table 2 shows the results for
each timepoint and the results of all available data aggre-
gated in the whole sample and in consistent typers.

Predicting Response to Medication
With nQRNN Score at Home

Considering only consistent typers, the nQRNNachieved
agoodpredictionof thefinal classification sinceweek3after
the treatment was started, showing stable median scores in
both groups from week 7 onward (Fig. 3). The nQRNN
score was higher in responders when comparedwith nonre-
sponders for every week analyzed (ie, from week 3 to week
24), with P values <.005 for consistent typers (Supporting
Information Table 3).When adjusted for multiple compari-
sons with a Bonferroni correction, weeks 20 to 24 did not
reach statistical significance.
The longitudinal ROC curve analysis for predicting

response to medication showed AUCs >0.80 for the
entire period analyzed (from week 3 to week 24) in con-
sistent typers, whereas the AUCs considering the whole
cohort oscillated between 0.69 and 0.75 (0.73-0.75 after
the sixth week of treatment). The nQRNN threshold, cal-
culated on a weekly basis using Youden’s method, was
stable from week 7 onward (Fig. 3). Supplementary data,
including AUCs and Cohen’s d effect sizes, are available
in Supporting Information Table 4.
The AUC of other baseline characteristics (age, computer

use, UPDRS-III, and PD Questionnaire-39) were not statis-
tically significant for the prediction of the final classifica-
tion, confirming that the results of the nQRNN are not the
result of baseline group differences (Supporting Informa-
tion Table 5).

Evaluation of Cognition as Confounding
A statistically significant difference was observed

between PD participants and HC in the MoCA score,
but such a difference was not noted between the
3 groups analyzed (PD participants who improved, PD
participants who did not change, and HC). Spearman ρ
between MoCA and nQRNN scores showed a nonsig-
nificant correlation (see Results). Moreover, the PD
participants classified as PD mild cognitive impairment

were evenly distributed between the 3 groups (1 in the
improved group, 2 in the not changed group, and 2 in
the worsened group).

Discussion

Medicine and neurology are moving toward a new
model of care based on objective data collected remotely
(ie, ecologically valid) and nonintrusively (ie, not requir-
ing the active cooperation of the patients).5,6,10,31,32 This
approach will allow doctors or drug makers to make
informed decisions on PD diagnosis or therapy remotely.
In this new scenario, we investigated the preliminary

validity of free unconstrained typing at home as a
proxy of drug response in PD. In a longitudinal pro-
spective naturalistic study with a lengthy follow-up, we
have shown that a recurrent neural network algorithm
accurately detected (ie, AUC = 0.75) the response to
dopaminergic therapy in an early PD population, with
a moderate κ agreement and large Cohen’s d effect size,
compared to time-coincident in-clinic UPDRS-III classi-
fication. Furthermore, we showed that the remote mon-
itoring of motor signs of PD using nonintrusive, free
typing information is feasible and has good compliance
considering that only two participants (3.3%) were
excluded because of insufficient data.
The possibility of remotely monitoring the response

to medication and the motor status of PD patients can
be a major step for improving the management of the
disease in clinical practice and making decisions on fur-
ther changes of treatment or on the planning of future
follow-up visits. Moreover, our score predicted from
the third week after starting the drug, which PD partici-
pants responded to medication at the final visit. The
classification became stable at week 7 with an nQRNN
threshold of 0.28 that remained the same until study
completion. Therefore, we were able to anticipate the
clinical response to medication as early as 21 weeks in
advance using uniquely remotely gathered typing data.
These findings suggest that our tool may be sensitive to
subtle motor changes, being able to detect people who
are responding to medication at an earlier stage using
remote, objective data. This could be crucial, for exam-
ple, in supporting go/no-go decisions in early interven-
tion trials, reducing the cost of developing new
compounds and also potentially being helpful when
adjusting treatments in clinical practice.
Our study has some limitations that should be

considered. First, although we used a nested cross-
validation approach that allowed us to test the general-
izability of our model in a limited dataset, our cohort
does not provide a complete representation of all
nuances of PD progression, cognitive states, coexisting
conditions, and typing habits. However, a machine-
learning model such as nQRNN is able to learn from
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new examples by design.33 Therefore, there is the
potential for fine tuning the nQRNN performance by
increasing the dataset or even adding other data modal-
ities (eg, touch screen or mouse clicks, among other
possibilities). Second, because of the size of our dataset,
we could not train the model to predict 3 distinct types
of progressions, and we focused on “improved” and
“not changed.” We are confident that future studies
including a larger number of participants with hetero-
geneous types of PD progressions could overcome this
issue that is critical for the translation of our approach
to everyday practice and clinical trials. In our model,
the “not changed” group included the HC. HC are
indeed a good sample of stable motor status (as it has
been confirmed by a UPDRS-III change that was always
below UPDRS-III MCID); however, in a drug trial or in
clinical practice HC do not necessarily need to be
included.
As expected, the accuracy of agreement and prediction

were higher in the consistent typers subgroup. Consistent
typers are more likely to produce typing data evenly during
the disease progression, leading to a more accurate predic-
tion. However, the results obtained including nonconsistent
typers are still significant, which was an unexpected result
in light of the limited amount of typing data available for
the nonconsistent typers subgroup. This is particularly
important as currently the age group of people affected by
PD may be less active users of technology. Finally, partici-
pants with other medical conditions, such as hand deformi-
ties or other neurological issues, were excluded from our
study. The impact of these possible confounders on our out-
come score still needs to be assessed.
In conclusion, we report on a pilot study on a novel

technological approach to monitor motor features of
PD and drug response remotely and ecologically in an
accurate way, reflecting the underlying effects of basal
ganglia neurodegeneration on a habitual task, such as
typing. We show that this approach is feasible and sug-
gest that it could be useful in everyday clinical practice
and could complement the current standard outcomes
for improving the efficacy of clinical trials in PD, help-
ing to reduce the burden for participants and investiga-
tors and to assess in a more time- and cost-efficient way
the response to medication.
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