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Abstract

Background: Parkinson’s disease (PD) is the second most prevalent neurodegenerative disease and one of the most common
forms of movement disorder. Although there is no known cure for PD, existing therapies can provide effective symptomatic relief.
However, optimal titration is crucial to avoid adverse effects. Today, decision making for PD management is challenging because
it relies on subjective clinical evaluations that require a visit to the clinic. This challenge has motivated recent research initiatives
to develop tools that can be used by nonspecialists to assess psychomotor impairment. Among these emerging solutions, we
recently reported the neuroQWERTY index, a new digital marker able to detect motor impairment in an early PD cohort through
the analysis of the key press and release timing data collected during a controlled in-clinic typing task.
Objective: The aim of this study was to extend the in-clinic implementation to an at-home implementation by validating the
applicability of the neuroQWERTY approach in an uncontrolled at-home setting, using the typing data from subjects’ natural
interaction with their laptop to enable remote and unobtrusive assessment of PD signs.
Methods: We implemented the data-collection platform and software to enable access and storage of the typing data generated
by users while using their computer at home. We recruited a total of 60 participants; of these participants 52 (25 people with
Parkinson’s and 27 healthy controls) provided enough data to complete the analysis. Finally, to evaluate whether our in-clinic-built
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algorithm could be used in an uncontrolled at-home setting, we compared its performance on the data collected during the controlled
typing task in the clinic and the results of our method using the data passively collected at home.
Results: Despite the randomness and sparsity introduced by the uncontrolled setting, our algorithm performed nearly as well
in the at-home data (area under the receiver operating characteristic curve [AUC] of 0.76 and sensitivity/specificity of 0.73/0.69)
as it did when used to evaluate the in-clinic data (AUC 0.83 and sensitivity/specificity of 0.77/0.72). Moreover, the keystroke
metrics presented a strong correlation between the 2 typing settings, which suggests a minimal influence of the in-clinic typing
task in users’ normal typing.
Conclusions: The finding that an algorithm trained on data from an in-clinic setting has comparable performance with that
tested on data collected through naturalistic at-home computer use reinforces the hypothesis that subtle differences in motor
function can be detected from typing behavior. This work represents another step toward an objective, user-convenient, and
quasi-continuous monitoring tool for PD.

(J Med Internet Res 2018;20(3):e89)   doi:10.2196/jmir.9462
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Introduction

Background
Parkinson’s disease (PD) is the second most prevalent
neurodegenerative disorder affecting 0.3% of the general
population and about 1% in people over 60 years [1]. Today,
PD diagnosis and management rely on the clinical judgment of
neurologists to detect and evaluate the severity of motor and
nonmotor manifestations of the disease [2]. The Unified
Parkinson’s Disease Rating Scale (UPDRS) is the most widely
used method to assess the longitudinal course of PD [3,4]. The
UPDRS score comprises 4 subscales, including the
clinician-scored motor section (UPDRS-III) that provides a
comprehensive evaluation of PD motor degeneration through
the evaluation of the observed performance in a series of specific
motor tasks [5]. Administered typically by a movement disorder
specialist, this scale requires significant training to minimize
rater bias [6]. The need of a trained specialist intrinsically limits
the frequency at which disease status and progression can be
assessed to a number of on-site clinical evaluations, usually
every 2 to 6 months [7].

There has been substantial interest in the last decade to develop
tools that can assess motor function in PD without the need for
specialist training or even on-site administration [8]. Such tools
could complement the current standard, introducing the potential
for greater screening opportunities or an increased assessment
frequency for tracking changes. A variety of technological
approaches have been designed for use in the clinic, such as
finger-tapping that introduces a series of standardized
finger-movement tasks that provide quantitative measurements
of motor impairment [9]. Additionally, out-of-clinic approaches
have been trialed, such as the mPower initiative [10], a
smartphone-based activity tracker that collects longitudinal data
from a series of tasks and surveys specifically designed to
evaluate the progression of PD symptoms.

Objective
Our project focuses on the analysis of finger-keyboard
interaction to assess psychomotor impairment. We have
previously shown that we can extract information relevant to
users’ psychomotor status by timing the keystroke events during

a typing task using a mechanical keyboard [11]. In Giancardo
et al [12], we showed that it was possible to derive an early-PD
phenotype based on a metric derived from the typing data
acquired in a controlled clinical environment. Subjects were
asked to transcribe a randomly selected folktale using a word
processor on a standard 15-inch laptop during a 15-min timed
routine.

The widespread use of personal electronics has placed typing
among the activities of our daily routine. This enables the
possibility of leveraging the data from users’ natural interaction
with their devices to apply our method in an unobtrusive manner.
From a data-collection standpoint, it is straightforward to extend
our technology to collect timing information in a naturalistic
ecologically valid scenario (eg, home). However, from the
standpoint of data analysis, passive monitoring poses interesting
challenges that could affect the application of our method to
evaluate at-home natural typing. From a data-sampling
perspective, typing happens in unpredictable bursts that
introduce a high degree of sparsity in the resulting typing
signals. The various contexts in which the typing data are
generated at-home may also add difficulty in contrast with the
controlled copy task performed in the clinic. Finally, hardware
heterogeneity introduces a potential confounder in the at-home
setting, which we were able to control in our in-clinic setting
using a single machine approach.

In this paper, we present the results of the validation of our
in-clinic-built algorithm to detect PD typing patterns in an
uncontrolled at-home setting. We implemented a data-collection
platform that allowed us to passively collect the typing
information from subjects’ daily interaction with their laptop.
Our algorithm performed well prospectively on a controlled
typing study conducted in the clinic. Here, we examine whether
the same algorithm performs well on the typing data collected
at home and evaluate the influence of the in-clinic typing task
in subjects’ normal typing behaviors.
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Methods

Study
The results presented in this work analyze the baseline data
collected as part of a 6-month longitudinal PD
drug-responsiveness study (NCT02522065). All the
experimental protocols were approved by the Massachusetts
Institute of Technology, USA (Committee on the Use of Humans
as Experimental Subjects approval no. 1412006804), HM
Hospitales, Spain (No. 15.05.796-GHM), Hospital 12 de
Octubre, Spain (No. CEIC:14/090), and Hospital Clínico San
Carlos, Spain (No.14/136-E). All subjects provided informed
consent before study enrollment. The recruitment and
experimental procedures were carried out following the relevant
institutional guidelines.

The study cohort consisted of 60 subjects, 30 people with
recently diagnosed Parkinson’s (PwP) and 30 healthy controls.
Only subjects who self-reported at least 30 min of daily laptop
use were considered for the study. The exclusion criteria
included cognitive impairment, upper limb functional limitation,
sleep disorders, and use of antipsychotics or sedative drugs. At
the moment of enrollment, 6 PwP were on rasagiline while the
remaining 24 were completely drug naïve. Notably, unlike
levodopa or dopamine agonists, rasagiline is a compound that
has a little impact on motor performance; so, for the purposes
of this study related to motor performance, we considered
patients on rasagiline to be similar to the PwP who had not yet
started medication. They maintained their baseline medication
status (ie, no drug or continued rasagiline) for a period of time
after the enrollment visit.

The enrolled participants underwent an initial baseline
assessment in the clinic that included clinical evaluation, an
in-clinic controlled typing test, and the technical setup to enable
at-home monitoring. The medical examination included a
UPDRS-III-based evaluation carried out by movement disorder
specialists. For the in-clinic typing test, the participants were
asked to transcribe an unstandardized sample text on a standard
word processor during 15 min. To emulate natural interaction
with the device, subjects were asked to type as they would
normally do at home. A standard machine was used in the
in-clinic setting, specifically, a Lenovo G50-70 i3-4005U with
4GB of memory and a 15-inch screen running Manjaro Linux
operative system. While undertaking the test, the data-collection
software ran in the background. Once the task was completed,
the typing data were sent to our database server. As part of the
baseline visit workflow, the data-collection software was
installed on participants’ personal laptop to enable at-home
remote monitoring. If they shared their computer, we provided
them with a laptop with preinstalled software. Subjects were
encouraged to enter into the routine of typing an email or a
document for at least 15 min per day but otherwise use the
computer as they would do normally.

Once enrolled in the study, PwP subjects kept their baseline
medication status for about a week. This baseline period allowed
an unbiased comparison between the in-clinic and at-home
conditions on the assessment of our method. Due to the
naturalistic design, there was some variability in the time
between the initial visit and the date the new therapy was started
(ie, some variability in the duration of the baseline period). This
period ranged from 0 to 63 days. For the data reported here, we
used a 7-day baseline period, unless there was a medication
change within that timeframe, in which case we used the actual
baseline period. For the control group, the baseline period was
defined as the 7-day period since the date they first logged in
to the neuroQWERTY platform.

To assure a comparable amount of typing activity between the
in-clinic and at-home settings, only subjects who aggregated at
least 15 min of typing data during their corresponding at-home
baseline period were included in the analysis. Though,
importantly, data at home were sparsely distributed over the
multi-day baseline period, whereas the in-clinic data were
concentrated in a 15-min continuous typing task. To manage
this sparsity in the at-home data, we applied the concept of valid
window to filter typing gaps and low-activity intervals. A valid
window was defined as a data sequence of at least 30 keystrokes
within a 90-s time interval. We excluded 5 PwP and 3 control
subjects from the analysis because they did not reach the
equivalent 15-min active typing threshold (10 valid windows)
during the baseline period.

A summary of demographic and clinical information for the
resulting cohort, 25 PwP and 27 healthy controls, can be found
in Table 1. Regarding PD severity, all PwP subjects were newly
diagnosed cases and in the very early stages of the disease, with
a mean UPDRS-III score of 20.48 points. For reference, a score
of 20 points is typical of patients with very mild disease severity
[13]. The 2 groups were matched in age, gender, and volume
of daily typing. A detailed representation of the at-home baseline
data collected for each subject is shown in Figure 1. The plot
illustrates the heterogeneity of subjects’ typing behaviors, which
we previously identified as one of the potential risks for the
validation of our approach in a natural at-home setting.
Participants typed an average of 24.07 (SD 15.13) min per day,
with 2.79 min per day for the less-active subject and 83.14 min
per day for the most active subject. This variability was also
observed within subjects’ typing routines, as several participants
did not present a consistent typing activity over the monitored
time period. These characteristics in the at-home spontaneous
typing data contrast with the quasi-continuous signal captured
during the in-clinic typing test. In the Analysis subsection, we
will explain how we addressed these differences to allow us to
compare the performance of the algorithm for the in-clinic and
at-home scenarios.
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Table 1. Comparison of the clinical and demographic variables between the Parkinson's disease and control groups. From the total participants, 52
provided a sufficient amount of at-home typing data (a cumulative total of at least 15 min). The UPDRS-III scale ranges from 0 to 108 (a higher score
indicates more severe impairment and disability). For reference, a score of 20 points is typical of patients with very mild disease severity.

P valueHealthy controls (n=27)People with Parkinson’s (n=25)Variable

<.0011.93 (1.84)20.48 (6.56)UPDRS-IIIa, mean (SD)

.7360.81 (10.63)60.2 (12.0)Age in years, mean (SD)

.7914 (52)12 (48)Number of women, n (%)

.7913 (48)13 (52)Number of men, n (%)

.6123.58 (14.68)24.58 (15.91)Daily typing in minutes, mean (SD)

aUPDRS-III: Unified Parkinson’s Disease Rating Scale (Part III).

Data-Collection Platform
The neuroQWERTY platform provides functionality for user
registration and log-in, distribution of the data-collection
software, and storage and management of the typing data. Once
installed, the data-collection software runs in the background,
capturing the timing information of any keyboard input. More
specifically, for each keystroke, the program stores the
timestamps corresponding to the press and release events. To
ensure privacy, the collected information did not include the
content of each specific key. However, each keystroke was
labeled with its corresponding key category; special key, right
side key, or left side key, to allow filtering of key types that
engage nonstandard digit kinematics (eg, SHIFT). The mean
for measured temporal resolution of the data-collection software
was 3 (SD 0.28) msec.

The typing information, linked to each user account, was
automatically sent to a remote server for analysis. Privacy and
data security were assured at 3 levels: at the client level, the
data transmission level, and the data storage level. Any typing
data stored on the local machine (which again, did not include
the content of the keys) were encrypted and deleted from the
device after sending to the remote server. Data transmission
was protected through secure hypertext transfer protocol. At
the server level, data were stored in the database in an encrypted
format and were only accessible by authorized database
administrators or by the user himself after authentication.

Finally, the platform included an administrator module to
provide the study coordinators with an interface to access and
control participants’ typing activity. The administrator dashboard
implemented a color code to alert study coordinators about
users’ prolonged inactivity. Web-based visualization of the
subjects’ typing data was also enabled, including the daily key
count and the temporal representation of the raw key typing
dynamics. A schema of the complete neuroQWERTY platform
framework is shown in Figure 2.

Analysis
We evaluate the classification ability of the neuroQWERTY
index (nQi) to separate a group of healthy controls from an early
PD population using the typing data collected during subjects’
natural interaction with their laptop. The nQi is the output of a
computational algorithm that uses the information contained in
the sequences of hold times, the time between pressing and
releasing each key on a mechanical keyboard, to detect evidence
of PD motor impairment. This algorithm was first introduced
in Giancardo et al [12], where we showed its ability to accurately
discriminate early PwP from healthy controls by analyzing the
data collected in a controlled in-clinic typing task.

A representation of the algorithm pipeline is shown in Figure
3. The hold time signal is split into 90-s windows that are
analyzed as independent typing units. Applying variance
analysis, the information within each unit is reduced to a 7D
feature vector that is used as the input of an ensemble model
consisting of a family of linear support vector regressors (SVR).
An independent window-level score is calculated as the median
of the outputs of each linear SVR. Finally, the final nQi score
is computed as the mean of the window-level scores. The feature
analysis and algorithm parameter estimation are described in
detail in our previous paper, Giancardo et al [12].

The ensemble linear-SVR model was trained using an external
dataset that included the typing signals of 18 early-PD subjects
and 13 healthy controls different than the ones included in this
study. This training set was fully collected in a controlled
in-clinic environment, that is, during a timed copy task
integrated into the study clinical visit. Therefore, the main
question we try to answer in this work is whether our algorithm
can generalize to typing data acquired in a fully uncontrolled
home-based scenario where the subjects are free to use their
laptops as they normally do.
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Figure 1. At-home typing activity. Panel A represents the amount of typing data collected from each of the 52 subjects (25 PwP, 27 CNT) included in
the analysis. The red (PwP) and blue (CNT) color scales indicate daily typing activity measured as the number of valid typing windows provided by
each subject during the analysis period. We defined a valid window as a sequence of at least 30 keystrokes within 90 s. Panel B illustrates the variability
in the amount of typing data with an example from a single PwP subject.
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Figure 2. The neuroQWERTY platform. This platform was designed to allow for automatic data retrieval of typing data collected at home and remote
management by a study coordinator. Operationally, an account in the neuroQWERTY platform was created for each participant in the study. The
data-collection software was downloaded and installed in their users’ personal laptop to enable remote data collection. The data, linked to each user
account, was encrypted and automatically sent to a remote server through their home Internet connection. The neuroQWERTY platform also implemented
an administrator module to provide the study coordinators with an interface to control and visualize participants’ typing activity.

Figure 3. Algorithm pipeline. The figure represents the pipeline to generate a single neuroQWERTY index (nQi) from a stream of typing data. (1) The
typing signal is defined as the time series of hold times corresponding to each keystroke within a typing routine. This signal is split by nonoverlapping
90-s windows that the algorithm will evaluate as independent typing units. (2) Only windows with at least 30 keystrokes within the 90-s interval are
analyzed. (3) The neuroQWERTY algorithm, previously trained on a separate in-clinic dataset, computes a single numerical score from each independent
window. (4) The final nQi is computed as the average of the window-level scores.
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In Figures 4 and 5, we present an example of the application of
the algorithm in a controlled in-clinic task opposed to the same
process in an at-home typing setting. The comparison of the
hold time data representation between in-clinic (panel A) and
at-home (panel B) illustrates the sparsity introduced in the typing
signals by the uncontrolled at-home environment, where the
keyboard is only used intermittently as opposed to the
continuous stream of data collected in the controlled in-clinic
setting. To account for the sparsity of the hold time series, only
valid windows, subsequences of at least 30 keystrokes within
each 90-s interval, are included in the analysis. Special key types
(eg, SHIFT) that may engage nonstandard digit kinematics are
excluded from the hold time (HT) data collection. Due to the
duration of the at-home baseline period, the volume of data
collected at home is generally greater than the in-clinic data
available for each subject. We measured an average of 9.62
(2.13) valid windows per subject during the in-clinic typing test
and collected an average of 112.33 (70.65) valid windows per
subject from the 7-day at-home typing activity. The extended
at-home monitoring period increases subjects’ at-home sample
size, which tends to reduce the individual’s internal variance
intensified in this uncontrolled environment.

The data analysis comprised 2 phases. First, we evaluated the
influence of the controlled typing task in subjects’ normal typing
behaviors. Specifically, we compared the measured values of
the raw typing metrics, flight time (FT, delay between
consecutive key presses), and HT (time between pressing and
releasing a key), and the computed nQi scores between the

in-clinic and at-home typing settings. To assess the similarity
in the relationship between the in-clinic and at-home metrics,
we computed the line of best fit and correlation coefficient. We
completed this first part of the analysis with a Bland-Altman
plot [14] to evaluate the nQi score’s agreement between the 2
typing settings.

In the second part of the analysis, we assessed the classification
performance of the neuroQWERTY method using the at-home
typing data and compared these results with the ones obtained
in the clinic. The results obtained in each typing settings were
evaluated using the following metrics: receiver operating
characteristic (ROC) analysis and the Mann-Whitney U test to
reject the null hypothesis that the healthy controls and the
Parkinson’s samples come from the same distribution. For the
ROC analysis, we used a sampling with replacement method
to define a distribution of curves from which we computed the
average area under the ROC curve (AUC) and its CIs. Each
curve is built on an iterative process that monotonically increases
the value of the index to define a dynamic threshold. On each
iteration, a sensitivity/specificity pair is computed using the
current threshold value. These pairs are used to draw the
resulting ROC curve. The value of the AUC can be interpreted
as the probability of the classifier to rank a randomly chosen
positive instance higher than a randomly chosen negative one
[15]. To evaluate the equivalence of our method between the
in-clinic and at-home settings, we estimated the percentage
agreement and the statistical difference of the resulting ROC
curves (DeLong test [15]).

Figure 4. Example of the application of the neuroQWERTY algorithm in an in-clinic typing test.
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Figure 5. Example of the application of the neuroQWERTY algorithm in the at-home setting. The neuroQWERTY algorithm described in Figure 3
can be used indistinctly to evaluate controlled or natural typing data. This figure represents the at-home typing data and corresponding scores for the
same subject shown in Figure 4 (note different time scales used in Figure 4 and Figure 5). Although the uncontrolled activity appears in unpredictable
bursts that introduce a high degree of sparsity, our window-based approach allows to analyze the at-home data using the same method applied for the
quasi-continuous in-clinic data.

Results

The results of the raw typing variables agreement between
in-clinic and at-home are shown in Figure 6. We evaluate the
statistical relationship, line of best fit, and correlation for the
median flight and HT measured in-clinic and at-home settings.
The values of the 2 typing metrics are very similar independently
of the typing scenario, as shown by correlation coefficient
values, .913 for the median FT and .897 for the median HT, and
also by the slope of the computed line of best fit, close to 1 in
both cases.

A similar analysis applied to the nQi scores is shown in Figure
7. The linearity between the in-clinic and at-home settings for
this variable is weaker than that observed on the raw typing
variables. The correlation coefficient is .749 in this case, and
the slope of the line of best fit is not as close to the unit, .597.
However, the agreement analysis suggests a correspondence
between the scores measured in-clinic and at-home settings,
with a 92% (48/52) of the cases falling between the
Bland-Altman limits of agreement (LoA).

In terms of classification performance, the nQi worked well
with the at-home typing data (Figure 8 and Table 2). The
absolute nQi scores tended to be larger for at-home data relative
to the corresponding in-clinic values (Figures 7 and 8), but in
both cases the scores for PwP were generally greater than for
healthy controls. The similarity in classification performance
for in-clinic versus at-home data can also be seen by comparing
the ROC curves (Figure 8 and Table 2). The cutoff point was
estimated using the closest-to-(0,1), that is, the use case that
maximizes the sensitivity/specificity pair [16] (Table 2). The
neuroQWERTY algorithm discriminates our early PD population
from healthy controls with an AUC of 0.76 (0.66-0.88) using
the typing data from the at-home natural interaction on a
mechanical keyboard. In the clinic, the results of the analysis,
a controlled typing task in the same cohort, achieved an AUC
of 0.83 (0.74-0.92). According to the DeLong test, the ROC
AUC difference between in-clinic and at-home settings was not
significant (P=.18). The percentage agreement of the results of
our method between the 2 typing settings was 79%.
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Figure 6. Comparison of raw typing metrics between in-clinic and at-home typing settings. The figure shows the correlation of the raw typing metrics,
hold time (HT; time between pressing and releasing a key), and flight time (FT; delay between two consecutive key presses), between in-clinic and
at-home settings. Each point represents the metric coordinates (in-clinic, at-home) for each of the 52 participants included in the analysis. Both HT and
FT values are very similar independently of the typing scenario, as shown by the correlation coefficient values. These results suggest that the in-clinic
task does not alter the way subjects type in comparison with their natural typing at-home, which supports our hypothesis that the neuroQWERTY
algorithm, built in an in-clinic setting, could be applied to evaluate motor impairment using the typing data from an uncontrolled at-home setting.

Figure 7. Comparison of neuroQWERTY index (nQi) between in-clinic and at-home typing settings. We evaluated the influence of the typing setting
in the nQi scores by applying a similar analysis as described in Figure 6 for the raw typing metrics. Panel A shows the correlation of the nQi scores
computed in-clinic and at-home. Panel B includes the results of the Bland-Altman analysis to evaluate the agreement of our method in the two typing
scenarios. The black line shows the mean difference (d) and the top and bottom dashed lines show the limits of agreement (LoA, d±1.96×SDd).
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Figure 8. Comparison of neuroQWERTY index (nQi) performance between in-clinic and at-home typing settings. Panel A scatterplot illustrates the
in-clinic and at-home nQi scores in a patient level. The two black lines represent the classification thresholds computed in-clinic (nQi=0.0473) and
at-home (nQi=0.0667). These thresholds were estimated for closest-to-(0,1) cutoff points that maximize sensitivity/specificity pairs. Panel B presents
the comparison of the receiver operating characteristic (ROC) curves showing the classification rate for the in-clinic and at-home nQi. The plotted curves
are the average result of the bootstrapped ROC analysis and the shadowed areas represent the corresponding CIs [5th-95th]. The statistical significance
of the Mann-Whitney U test is estimated to reject the null hypothesis that the two groups, PwP and CNT, come from the same population. It is noted
as: P<.001(***), P<.01(**), and P<.05(*).

Table 2. The neuroQWERTY index (nQi) performance comparison. The classification performance achieved at-Home is comparable with the results
obtained in a controlled in-clinic. The statistical significance is computed with 2-sided Mann-Whitney U test to reject the null hypothesis that PwP and
healthy control subjects come from the same population.

nQia ScoreMetric

At-homeIn-clinic

0.090 (0.048)0.092 (0.058)Mean (SD) for PwPb (n=25)

0.054 (0.030)0.046 (0.029)Mean (SD) for healthy controls (n=27)

0.76 (0.66-0.88)0.83 (0.74-0.92)AUCc (5th-95th)

P<.01P<.001Significance

0.73/0.690.77/0.72Sensitivity/specificity

P=.18P=.18DeLong test

79%79%Percentage agreement

anQi: neuroQWERTY index.
bPwP: people with Parkinson’s.
cAUC: area under the curve.

Discussion

Principal Findings
The results of this study represent a step toward a transparent
and ubiquitous motor sign assessment tool for PD. In our
previous work [12], we introduced the neuroQWERTY method,
a machine learning algorithm trained to quantify PD severity
through the analysis of the typing patterns found in the time
series of HT. Our method was able to discriminate an early PD

population from a matched control group using the typing data
collected during a controlled in-clinic task. In this paper, we
tested the validity of our algorithm in an uncontrolled at-home
setting. The neuroQWERTY platform allowed us to
unobtrusively collect the typing information from a cohort
comprising 30 PwP and 30 matched healthy controls. Most
(52/60, 90%) of the study subjects (25 PwP, 27 healthy controls)
provided enough data during the follow-up period to evaluate
the nQi at home. Our neuroQWERTY algorithm, built using a
separate in-clinic dataset, was able to distinguish PwP from
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healthy controls through the analysis of natural at-home typing
patterns with an AUC of 0.76 and 0.73/0.69
sensitivity/specificity. Despite the sparsity and heterogeneity
introduced by each subject’s routine use of the computer, the
neuroQWERTY method performed nearly as well in the at-home
setting as it did when applied in a controlled in-clinic typing
task (AUC 0.83 and 0.77/0.72 sensitivity/specificity). The nQi
scores presented no significant differences between the de-novo
PwP group (19) and the subset of PwP participants on
medication (Multimedia Appendix 1).

The comparison of the raw typing metrics between the 2 typing
scenarios suggests that the in-clinic typing test does not affect
the way people type with regard to their normal use of the
computer at-home. The correlation coefficient for the median
HT between in-clinic and at-home was ρ=.913 (P<.001). A
similar analysis applied to the resulting nQi shows a weaker
correlation between the scores computed from the in-clinic and
at-home typing data (ρ=.749, P<.001, with 48 out of 52 or 92%
of the samples within the Bland-Altman LoA). This could be
due to the sensitivity of the algorithm to small changes in the
HT values between the 2 typing settings. Despite the weaker
correlation, the classification performance of the
neuroQWERTY method applied at-home was similar to the
classification performance in-clinic (statistically
indistinguishable by the DeLong test: P=.18, percentage
agreement: 79%).

These results support our initial hypothesis that PD-related
motor signs affect the way patients interact with mechanical
keyboards and are, therefore, detectable through the analysis of
their regular typing patterns. The ability of the neuroQWERTY
algorithm to extrapolate the patterns learned from a separate
in-clinic dataset to correctly identify PD-characteristics in the
at-home typing data provides external validity to our method.
Being able to generalize to data collected from the hardest
possible scenario can also be seen as an opportunity to improve
these results by implementing an at-home-specific algorithm
that, trained on passively collected data, will be able to identify
the useful information and learn to filter the several different
sources of noise introduced by the uncontrolled at-home setting.
Although the current clinical standard, UPDRS, outperforms
our technique, the goal of neuroQWERTY is not to replace
UPDRS but to provide a method that enables PD assessment
when a clinician is not available. Nevertheless, it would be
interesting to explore the potential for the nQi approach to
provide a meaningful indication of UPDRS. Despite being based
just on a distal upper limb movement, with our limited dataset
we did find a significant moderate correlation between the nQi
scores and UPDRS-III (Multimedia Appendix 2).

Main Contribution and Limitations
Using the timing information from users’ natural typing activity
provides our approach with a number of advantages over
alternative solutions, but it also poses some limitations. An
obvious concern is the level of compliance, since the method
depends on sufficient use of the computer. In the study cohort,
a high percentage of the participants (90%) provided enough
data during the 7-day follow-up to shape a representative typing
pattern. Our user adherence results highlight the advantages of

passive data collection in contrast with other existing active
task-based methods. Task-based methods are commonly limited
by their dependence on users' active engagement to collect
information through a series of standardized tasks, which
introduces potential artifacts due to subject-awareness of being
monitored [17] and hinders user compliance. As an example,
in the context of the mPower study less than 10% of the
participants provided 5 or more finger-tapping data points over
a 6-month follow-up period [10].

Although our passive data-collection approach significantly
increases user adherence, some strategies could be employed
to maximize it. A possible solution to reduce the rate of excluded
participants would be collecting data not only from laptop use
but from any electronic device that entails typing. In Arroyo et
al [18], it was proven that a similar approach can be used to
detect PD via smartphone touchscreen typing. Integrating data
from multiple devices would provide a more continuous stream
of data; therefore, a deeper insight to assess PD signs.

Future Work
Proving that our method can distinguish an early PwP cohort,
with an average years from diagnosis of 1.66 (1.20) and mean
UPDRS-III score of 20.48 (6.56) from a matched healthy control
group is an indicator that at-home typing patterns can capture
PD-specific motor characteristics that are mild in this stage of
the disease. This could have an impact in early detection of PD
as machine learning algorithms can be trained to detect very
subtle variations in the input data, in this case changes in the
typing patterns, caused by early motor manifestations of PD
that may often go unnoticed by clinicians [19]. The
neuroQWERTY software could be installed on PD-risk
populations’ devices to enable earlier diagnosis, when putative
neuroprotective treatments could stop neurodegeneration.
Clinical studies in an as-yet-undiagnosed population would be
needed to validate the sensitivity and applicability of our tool
for this specific use case.

Although our classification results show promise, our longer
term goal is to develop a tool to objectively track progression
of PD signs. This would provide clinicians with invaluable
information to tailor treatments to patients’ specific conditions.
Today, there is no known cure for PD, but available medications
can help manage its symptoms. Individualized treatment
regimens are crucial to provide optimized symptom control
[20]. Medications adjustments rely mainly on the information
gathered by movement disorder experts during clinical visits.
This limits decision making to subjective follow-up
examinations scheduled every 2 to 6 months. Ideally, our
approach could be applied not only to classify but also to track
PD progression and therapeutic efficacy. This would require
further validation in a longitudinal study to evaluate the
precision of the neuroQWERTY approach to monitor PD
progression over time.

Conclusions
Relying on the analysis of the temporal patterns from the daily
interaction with electronic devices, our approach introduces a
new way to objectively and unobtrusively detect motor
impairment in PD, providing access to quasi-continuous
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ambulatory data without harming user compliance. The main
purpose of this analysis was to evaluate the validity of the nQi,
an in-clinic-built digital marker for early PD motor impairment,
in an uncontrolled at-home setting. The classification
performance of the algorithm was statistically similar in its
ability to discriminate 25 PwP and 27 healthy controls from the
at-home typing data (AUC of 0.76 and 0.73/0.69

sensitivity/specificity) nearly as well as it was able to separate
them using the in-clinic typing patterns (AUC 0.83 and 0.77/0.72
sensitivity/specificity). These results prove that the data collected
from subjects’ routine use of the computer are also valid to
detect PD-related motor signs, getting us closer to our ultimate
goal of providing an objective ambulatory tool to monitor PD
progression.
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Multimedia Appendix 1
Influence of medication in nQi assessment. Six of the PwP study participants were on rasagiline when they joined the study. Panel
A shows no significant differences between the nQi scores of the PwP participants using rasagiline and the de-novo group. Panel
B shows the UPDRS-III scores for the CNT, PwP De-Novo and PwP On-Medication groups. Participants on rasagiline scored
higher up in the motor scale in comparison with the average score in the full PwP cohort. It is possible that this greater severity
in their baseline status could be masking the effect of medication.

[PNG File, 330KB - jmir_v20i3e89_app1.png ]

Multimedia Appendix 2
nQi correlation with motor clinical standard. The figure shows the correlation between UPDRS-III scale and the nQi scores
measured in-clinic (Panel A) and at-home (Panel B). Correlations were significant in both typing settings and moderate as shown
by the correlation coefficients; .50 in-clinic and .34 at-home. Despite being based just on distal upper limb movement, with our
limited dataset we did find a significant moderate correlation between the nQi scores and UPDRS-III.
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