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What We already Know about This Topic

• Risk Stratification Index 3.0 predictive analytical models provide 
risk profiles at hospital admission from individual administrative 
claims histories. These models were generated and validated in a 
population that was mostly more than 65 yr old.

What This article Tells Us That Is New

• In two different statewide databases, Risk Stratification Index 3.0 
models worked well in younger and healthier adults.

The Risk Stratification Index 3.0 (Health Data Analytics 
Institute, Inc., USA) suite of predictive models is 

a broadly applicable set of risk adjustment measures that 
use administrative claims data to predict health outcomes 

including mortality, prolonged hospitalization, and adverse 
events during hospitalization and after discharge.1 
This well-validated and calibrated broad suite of predictive 
algorithms uses diagnostic, procedural, and demographic 
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aBStract 
Background: The authors previously reported a broad suite of individual-
ized Risk Stratification Index 3.0 (Health Data Analytics Institute, Inc., USA) 
models for various meaningful outcomes in patients admitted to a hospital 
for medical or surgical reasons. The models used International Classification 
of Diseases, Tenth Revision, trajectories and were restricted to information 
available at hospital admission, including coding history in the previous year. 
The models were developed and validated in Medicare patients, mostly age 
65 yr or older. The authors sought to determine how well their models predict 
utilization outcomes and adverse events in younger and healthier populations.

Methods: The authors’ analysis was based on All Payer Claims for surgical and 
medical hospital admissions from Utah and Oregon. Endpoints included unplanned 
hospital admissions, in-hospital mortality, acute kidney injury, sepsis, pneumonia, 
respiratory failure, and a composite of major cardiac complications. They pro-
spectively applied previously developed Risk Stratification Index 3.0 models to the 
younger and healthier 2017 Utah and Oregon state populations and compared the 
results to their previous out-of-sample Medicare validation analysis.

results: In the Utah dataset, there were 55,109 All Payer Claims admissions 
across 40,710 patients. In the Oregon dataset, there were 21,213 admissions 
from 16,951 patients. Model performance on the two state datasets was similar 
or better than in Medicare patients, with an average area under the curve of 0.83 
(0.71 to 0.91). Model calibration was reasonable with an R 2 of 0.93 (0.84 to 0.97) 
for Utah and 0.85 (0.71 to 0.91) for Oregon. The mean sensitivity for the highest 
5% risk population was 28% (17 to 44) for Utah and 37% (20 to 56) for Oregon.

conclusions: Predictive analytical modeling based on administrative claims 
history provides individualized risk profiles at hospital admission that may help 
guide patient management. Similar predictive performance in Medicare and in 
younger and healthier populations indicates that Risk Stratification Index 3.0 
models are valid across a broad range of adult hospital admissions.

(ANESTHESIOLOGY 2023; 138:264–73)
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information over time to anticipate evolution of health 
conditions based solely on administrative claims and demo-
graphic data available at the time of admission.

A limitation of Risk Stratification Index 3.0 models is that 
they were developed and out-of-sample validated in Medicare 
fee-for-service patients who are mostly age 65 yr or older. 
An obvious question is whether Risk Stratification Index 3.0 
models are comparably predictive in other populations, espe-
cially those that are younger and healthier. Our goal was to 
determine how well seven Risk Stratification Index 3.0 mod-
els developed in Medicare patients perform when applied to 
out-of-sample younger and healthier adult populations.

Materials and Methods
As described elsewhere,1 Risk Stratification Index 3.0 mod-
els were developed on the Centers for Medicare & Medicaid 
Services (Baltimore, Maryland) Research Identifiable File 
data on a remote server using the SAS Enterprise Guide 
(version 7.15; SAS Institute Inc., USA) under a Centers for 
Medicare & Medicaid Services data use agreement (No. 
51870). The models are extensions of previously published 
Risk Stratification Index versions 1.0 and 2.0.2,3

Subject Selection

Our reference study design was an extension of the previ-
ously described out-of-sample validation in all 2017 to 2019 
hospitalized Medicare fee-for-service and dual-eligible 
(Medicaid and Medicare) beneficiaries.1 Briefly, in that 
study, admissions were excluded if patient age on admission 
was either younger than 18 or older than 99 yr, records had 
missing or inconsistent data (e.g., missing sex or birthdate 
information, or had different sex, birth dates, or mortality 
dates [if applicable] reported in source files), or patients had 
either discontinuous Part A or Part B Medicare coverage or 
had Part C coverage in the year before admission (fig. 1A). 
Claims data during the year before the admission were used 
to characterize the patient history. Admissions were  con-
sidered “planned” when designated elective, and were oth-
erwise considered “unplanned.” Claims data during the 90 
days after admission characterized outcomes. Model per-
formance results from the 2019 Medicare out-of-sample 
validation cohort were used as the baseline performance 
comparator for the current study.

Some U.S. states consolidate medical and pharmacy 
claims data submitted voluntarily by healthcare insurance 
carriers in what are commonly called All Payer Claims 
Databases.4 These registries contain medical and phar-
macy claims along with insurance enrollment and health 
provider data for a large fraction of each state’s popula-
tion. The Utah Office of Health Care Statistics (Salt Lake 
City, Utah) and the Oregon Office of Health Analytics 
(Portland, Oregon) have each established progressive and 
well-defined All Payer Claims data external access pro-
grams and were thus selected for analysis. We used the 

available claims files from 2017, with cases selected as 
shown in figure 1, B and C.

Our analysis plan was approved by the Utah Department 
of Health & Human Services Institutional Review Board 
(Salt Lake City, Utah; No. 544) with a waiver of informed 
consent requirements. State data were housed on a local 
server using R software (3.6.0; available at https://
cran.r-project.org/src/base, accessed January 6, 2023) under 
separate data use agreements with each party. Data were 
handled consistent with our data use agreements, which 
required suppression of metrics in downloaded tables for 
populations smaller than 11 individuals.

This report follows the Transparent Reporting of a 
Multivariable Prediction Model for Individual Prognosis or 
Diagnosis reporting guideline.5

Outcomes Selection

For our Risk Stratification Index 3.0 validation analysis, we 
included a suite of 10 models that predict excess length of 
stay and adverse events, selected to demonstrate performance 
of predictors for clinically and economically meaningful 
outcomes spanning a broad range of incidences. Cardiac 
complications, kidney injury, sepsis, pneumonia, and respi-
ratory failure were defined using International Classification 
of Diseases, Tenth Revision (ICD-10), diagnosis and proce-
dure codes6 along with information about their associated 
claim, such as the setting and revenue center. Additionally, 
we considered whether codes were primary or secondary.

As reported previously, endpoint definitions were 
derived using published methods for classifying events 
using administrative data.1 Events were identified between 
admission and discharge (for in-hospital endpoints) and/
or between admission and 90 days thereafter (for 90-day 
endpoints). In-hospital mortality was defined by any-cause 
death between admission and discharge.

The state datasets did not include sufficient information 
to determine length of stay, discharge location, or vital sta-
tus after discharge (for example, date of death). We were 
therefore unable to compare these three outcomes to the 
Medicare analysis. The state datasets also did not include 
race of included subjects, precluding description of the 
population’s racial characteristics.

Model Development

As previously presented, medical history was represented by a 
set of variables indicating the presence or absence of individual 
and categories of ICD-10 diagnostic and procedure codes. We 
used a custom procedure to reduce 69,000 potential ICD-10 
diagnostic codes to a representative subset of 4,426 codes by 
collapsing rare codes into their parent codes to avoid overfitting. 
ICD-10 diagnostic codes were additionally represented by their 
corresponding default Clinical Classifications Software Refined 
category.7 Similarly, ICD-10 procedure codes were represented 
by their corresponding default Clinical Classifications Software 

D
ow

nloaded from
 http://pubs.asahq.org/anesthesiology/article-pdf/138/3/264/682101/20230300.0-00011.pdf by C

leveland C
linic Foundation, D

aniel Sessler on 09 February 2023

https://cran.r-project.org/src/base
https://cran.r-project.org/src/base


266 anesthesiology 2023; 138:264–73 

PerioPerative Medicine

Greenwald et al.

category.8 Temporal information relative to a prediction date 
was encoded using two sets of these variables representing the 
presence or absence of relevant codes in the past 90 or 365 days.

Outcomes were indexed to the date of inpatient admis-
sion, and claims within the preceding 365 days were 
included in our models. The only information used from 

Fig. 1. cohorts selection diagrams for (A) 2019 Medicare dataset; (B) Utah all Payer claims Database dataset; (continued) 
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the day of admission was the admitting diagnosis (not the 
principal diagnosis) along with the principal procedure for 
planned admissions. We also included age at the time of 
admission. We did not include present-on-admission codes 
because these are usually coded during or after discharge 
and are thus not actually available upon admission.

Logistic regression models were trained with the SAS 
HPLOGISTIC procedure using log–log linkage and back-
wards fast selection of covariates, keeping those with a P < 
0.01 significance level. The HPLOGISTIC CODE state-
ment option was used to generate SAS code for subse-
quent use in a SAS DATA step to apply the model to score 
new data. We used the asymmetric log–log link function 
because such models handle skewed extreme value distri-
butions associated with rare events better than symmetrical 
link functions.9 There were nonlinear interactions by sex 
and admission type between ICD-10 codes and various 
outcomes that precluded using a single logistic model for 
each outcome. We therefore constructed an overall model 
for each outcome, designated an ensemble model, that was 
based on coefficients from four models depending on sex 
and admission status.

Model application

Our general approach was to apply our final Medicare-
derived models prospectively on each of the two 
out-of-population state datasets separately to document 
performance on each of the prospective age validation 
datasets. Model predictions for each state database were 
generated in two steps. First, a data file similar in format 

to that used for model development was created to house 
the patient demographic and medical history for each 
admission. Second, the SAS code generated by the SAS 
HPLOGISTIC procedure during model development was 
applied to the medical history data file in a SAS DATA step 
to compute model predictions.

Performance Metrics
Overall discrimination performance was evaluated using 
the mean and 95% CI for area under the receiver operating 
characteristics curve (AUC). To compare model detection 
performance consistently across various endpoints, we com-
pared sensitivity for each model at an alert threshold corre-
sponding to the highest 5% risk fraction of the population.

Calibration performance for each endpoint was evalu-
ated using observed and predicted incidences of subpopula-
tions in bins along the full continuum of risk. We computed 
R2 goodness-of-fit values between observed and predicted 
incidences using all bins having more than 100 subjects. 
We similarly computed the slope and intercept of the best-
fit line and the overall observed-to-predicted ratio. In the 
primary calibration analysis, we assessed calibration perfor-
mance using subpopulations in steps of 1% resolution of 
risk. This approach used assessments of variable-sized pop-
ulations at equal increments of risk. In a secondary analysis, 
we assessed calibration performance using decile subpopu-
lations based on risk. This second approach used assessments 
of similarly sized populations at variable increments of risk.

We a priori applied the same minimum acceptable per-
formance criteria as were used in our previous validation 
study using two metrics to reject clinically nonviable models. 

Fig.1. (continued) (C) Oregon all Payer claims Database dataset.
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Model acceptance required (1) a reasonably accurate over-
all classification performance defined by an AUC 0.70 or 
greater; and (2) relatively accurate prediction defined by an 
observed-to-expected ratio near 1 over the full risk contin-
uum (i.e., calibration R2 greater than 0.80). The conservative 
0.7 minimum acceptance threshold for AUC was based on 
consultation with clinical advisors and a literature review 
indicating the acceptability of numerous perioperative 
machine-learning models with c-statistics in the 0.7 to 0.8 
range.10,11 Because no a priori hypotheses were tested, we did 
not estimate required sample size, but instead used all eligible 
cases available in the two state files for the selected years.

results
There were a total of 9,205,835 admissions eligible from 
5,336,265 Medicare beneficiaries for analysis in 2019 used 
previously for model validation. For the Utah dataset, there 
were 55,109 admissions from 40,710 subjects, and for 
Oregon, there were 21,213 admissions from 16,951 sub-
jects. The fraction of surgical admissions was 26% in our 
Medicare population, 26% in Utah’s and 24% in Oregon’s. 
As expected, the state populations were younger than the 
Medicare population, with the mean Medicare age being 
74 yr versus 58 yr for Utah and 44 yr for Oregon (table 1). 
As might thus be expected, the incidence of various morbid 

outcomes was less, confirming that the state populations 
were also healthier. A consequence of the populations being 
healthier is that there were fewer diagnostic claims per sub-
ject in each of the state datasets.

Prospective classification and primary calibration per-
formance characteristics for binary event predictors in the 
state datasets are summarized in tables 2 and 3. Secondary 
calibration performance characteristics are summarized 
in Supplemental Table 1 (http://links.lww.com/ALN/
C1000). Calibration results reported in the main manuscript 
body are solely from the primary analysis. The observed 
incidence of endpoints ranged from 0.7% for pneumonia to 
10.8% for unplanned readmissions within 90 days and were 
all considerably less than comparable incidences observed in 
the Medicare population.

The mean and range of AUCs across all seven outcomes 
were 0.83 (0.71 to 0.91). The mean and range of the cali-
bration goodness-of-fit (R2) were 0.89 (0.71 to 0.97). The 
receiver operator characteristics and calibration curves for 
each endpoint model for each of the state datasets are pro-
vided in the Supplemental Digital Content (http://links.
lww.com/ALN/C1000). For the highest 5% risk population, 
the mean and range of sensitivity were 32% (17 to 56%).

Prediction of short-term (e.g., in-hospital) events fre-
quently outperforms prediction of longer-term (e.g., after 
discharge) events. As expected, the inpatient mortality 

Fig. 2. Performance characteristics on Medicare and combined state admissions. (A) area under the receiver operating characteristics curve 
(aUc). (B) R 2.
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predictive model showed the best performance across the 
Medicare (AUC, 0.82), Utah (AUC, 0.89) and Oregon 
(AUC, 0.90) datasets, with especially high sensitivity at the 
top 5% threshold (Medicare, 30.1%; Utah, 44.1%; Oregon, 
56.5%). The calibration metrics, however, were lower in 
the state datasets because of endpoint detection issues as 
explained in the Discussion section (Utah R2, 0.93; Oregon 
R2, 0.85) than in the Medicare population (R2, 1.00). 
Calibration results were generally similar whether assessed 
using subpopulations at percent increments of risk in the 
primary analysis (table  3) or using decile subpopulations 
based on risk in the secondary analysis (Supplemental Table 
1, http://links.lww.com/ALN/C1000).

Five 90-day adverse event models (pneumonia, acute 
kidney injury, sepsis, major cardiovascular complications, 
and respiratory failure) all showed a similar pattern of some-
what higher state AUC (0.80 to 0.86 vs. 0.72 to 0.79) and 
sensitivity (20 to 47% vs. 16 to 24%) performance results 
relative to the Medicare population (fig. 2). The model for 
90-day unplanned admissions showed the lowest, but still 
acceptable, performance across all datasets (AUC: 0.70 to 
0.78; sensitivity: 11.6% to 19.9%).

discussion
We present the performance of Risk Stratification Index 3.0 
predictive models for seven endpoints when applied prospec-
tively to two large out-of-sample state datasets comprised of 
younger and healthier subjects who are more representative 
of the overall adult U.S. population requiring hospital admis-
sion. For all the endpoints, performance measures including 
AUC, R2, and sensitivity at the top 5% risk all were similar or 
better than the performance obtained on just the Medicare 
population. These results support the conclusion that our 
models are robust and widely applicable to the broad U.S. 
adult population including relatively young and health sub-
jects. One factor contributing to Risk Stratification Index 

3.0 models being so robust is that they were trained on more 
than 18 million hospital admissions and validated on more 
than 9 million out-of-sample Medicare admissions.

An intriguing observation is that models built on an 
older Medicare population generally performed as well or 
better when applied to younger and healthier subjects. One 
explanation may be that older individuals often have con-
comitant conditions that may contribute to risk in complex 
ways, whereas younger patient usually have fewer chronic 
conditions and thus a statistically cleaner risk profile link-
age to the primary admission diagnosis. For example, we 
observed that the average Medicare beneficiary had an aver-
age of 77 medical claims recorded in the year before admis-
sion, whereas patients in Utah had only 40, and Oregon 
patients had only 44.

We also note that the incidence of the seven adverse 
outcomes described in this study was much lower in the 
younger and healthier state populations. The Oregon data-
set showed the lowest event rates, consistent with the lower 
average age of that population. This dataset also showed 
slightly better performance metrics, thereby suggesting a 
complex interaction between lower age, fewer events, and 
better model performance metrics. However, this pattern 
is insufficiently consistent to conclude with certainty that 
these predictive models work best on young, otherwise 
healthy populations.

The state datasets we used differed from the Medicare 
database in a number of important ways. For example, 
the Oregon dataset did not (based on policy) include 
any Medicare-eligible subjects, and both datasets con-
tained a sizeable number of pregnancy-related admissions. 
Furthermore, neither state database is curated as well as 
the Medicare registry. We confirmed the presence of sev-
eral data quality issues first identified in a 2017 report by 
The Agency for Healthcare Research and Quality,12 most 
notably the presence of duplicate records and missing data 
fields. We also identified coding differences, including an 

table 1. Mean and Interquartile of age, and Percentage of Men, Percentage of Surgical cases, Percentage of Unplanned admissions, 
average Number of Previous claims per admission, and Percentage of admissions with No Previous claims within 1 yr of admission 
Date for the 2019 Medicare and 2017 Utah and Oregon Datasets.

characteristic Medicare dataset Utah dataset oregon dataset 

No. of admissions 9,205,835 55,109 21,213
Surgical cases, % (No.) 26 (2,428,690) 26 (16,679) 24 (5,306)
No. of Individuals 5,336,265 40,710 16,951
age, mean [interquartile range] 74 [68–83] 58 [35–76] 44 [31–58]
age > 65 yr, % (No.) 80.9 (7,444,716) 43.1 (23,722) 0.5 (103)
Men, % (No.) 46 (4,267,427) 36 (20,060) 33 (7,092)
Unplanned admissions, % (No.) 80 (1,846,670) 46 (25,560) 48 (10,182)
Number of claims within 1 yr before admission, mean [interquartile range] 77 [32–101] 40.1 [16–48] 43.9 [17–55]
admissions with no claims within 1 yr before admission, % (No.) 0 (10,648) 0 (0) 0 (0)

Neither state provided race information. The percentage of surgical cases was derived by first establishing a pairing between each principal diagnosis code and its most common 
admission type as defined by the Diagnostic related Group (i.e., medical or procedural/surgical case) using the Medicare Dataset, and then applying the mapping to identify the 
surgical cases in the three datasets.
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unexplained near absence of certain codes (such as for dial-
ysis) in the Utah state database. The absence of codes used 
to identify endpoints impacts their apparent incidence (e.g., 
missing dialysis codes associated with chronic kidney disease 
are unavailable to exclude false detection of acute kidney 
injury, resulting in the inflation of the apparent incidence 
of acute kidney injury). This inflation in turn degrades 
the “actual”-to-expected performance in those datasets. 
Taking the example of acute kidney injury in the Utah 
dataset, the apparent incidence is inflated to nearly twice 
that observed in a similar Utah population in the Medicare 
database (results not shown). Consequently, the calibration 
plot demonstrates that the rank ordering of the prediction 
is tightly preserved as desired, although the slope of the cal-
ibration curve markedly differs from unity. Although data-
base limitations might make these state registries unsuitable 
for developing reliable new predictive models, they none-
theless provided a rigorous external validation test set.

Our overall calibration results met our prespecified 
acceptance criteria; however, additional refinements in the 
calibration of some models may be considered to optimize 
performance in datasets comprised of populations with 
observed event rates different than those in the development 
Medicare set. Our results indicate that our models work 
reasonably well even with the sort of imperfect datasets that 
might be encountered with clinical implementation.

A limitation of our analysis is that we were unable to 
evaluate our models for discharge destination, excess length 

of stay, and 90-day mortality because requisite data were 
not included in the state registries. While we present model 
validations applicable to broad U.S. adult populations, 
we did not include children. Children differ substantially 
from adults in rarely having serious chronic conditions. 
Furthermore, they are hospitalized for different reasons. Our 
models should therefore be properly validated in pediatric 
patients and refined as necessary for this special population. 
Future research will be needed to document applicability 
to other sources of diagnostic and procedural histories, such 
as electronic medical records, registries, health information 
exchanges, or institutional data warehouses. The potential 
impact of COVID-19 and associated disruptions in health-
care delivery on model performance must also be assessed 
in future research. International Classification of Disease 
coding in the United States is generally reliable since it is 
guided by well-enforced federal regulations. Less rigorous 
application would degrade Risk Stratification Index 3.0 
predictions.

Our model validation consisted of prospectively testing 
previously developed models on two out-of-sample state 
datasets and shows that predictions exceeded our prespec-
ified minimum acceptable performance standards. We did 
not employ either a “non-inferiority” or a “superiority” 
design because our goal was to determine whether the 
models can be applied successfully to other populations—
especially younger and healthier patients who better repre-
sent typical U.S. hospitalized patients. Our results indicate 

table 3. calibration Performance of risk Stratification Models on Out-of-sample Medicare and State admissions

Period endpoint 

calibration Metrics* R 2 calibration estimates (intercept/Slope)

Medicare Utah oregon Medicare Utah oregon 

 In-hospital
Mortality 1.00 0.93 0.87 0.00/0.94 –0.01/0.90 0.00/0.92
Discharge to facility 1.00 N/a N/a 0.00/1.00 N/a N/a

 90 days after admission Pneumonia 1.00 0.97 0.86 0.00/0.89 –0.02/2.28 –0.01/0.84
acute kidney injury 0.99 0.84 0.91 0.01/0.87 0.03/1.64 –0.01/0.89
Sepsis 1.00 0.95 0.71 0.01/0.92 –0.01/1.75 –0.01/0.90
Major cardiovascular 

complication
1.00 0.95 0.85 0.01/0.93 –0.01/1.75 0.00/1.23

respiratory failure 1.00 0.93 0.86 0.01/0.90 –0.02/2.11 –0.01/0.77
Unplanned admission 1.00 0.95 0.87 0.00/0.98 –0.05/1.16 –0.04/1.02

 Overall mean (95% cI) Including discharge to 
facility

1.00
(1.00 to 1.00)

N/a N/a 0.01
(0.00 to 0.01)/

0.93
(0.90 to 0.96)

N/a N/a

Excluding discharge to 
facility

1.00
(1.00 to 1.00)

0.93
(0.90 to 0.96)

0.85
(0.80 to 0.89)

0.01
(0.00 to 0.01)/

0.92
(0.89 to 0.95)

–0.01
(–0.03 to 0.00)/

1.66
(1.29 to 2.02)

–0.01
(–0.02 to 0.00)/

0.94
(0.83 to 1.05)

Statistics are calculated using observations per percent risk of adverse event. Metrics include endpoint, observation window (either in-hospital or within 90 days after admission), 
R 2 goodness-of-fit, estimates of intercept and slope of best fit regression line. Endpoints include acute kidney injury, sepsis, respiratory failure, unplanned hospitalization, discharge 
to facility status, major cardiovascular event, mortality, and pneumonia. Endpoints in the table are ordered by increasing incidence within their corresponding event period (i.e., 
in-hospital or 90 days after admission).
*calibration metrics: R 2 goodness-of-fit between observed and expected incidences among subpopulations using bins of 0.01 resolution of predicted risk, excluding the top 1% of 
subjects with highest risk. Slope and intercept: estimates of the regression line coefficients (i.e., best fit line between actual and expected observations).
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that they can. Although this work externally validates the 
models, it is currently not clear if the application of the 
models will be feasible across all settings in real time or, if 
applied, improves either efficiency or patient outcomes. We 
are currently testing deployment of these models for a num-
ber of clinical applications to address these open questions.

Fortunately, there are current and impending ways to 
electronically acquire a patient’s billing record to help near 
real-time implementation of the models. A number of 
recent rulings have driven development and adoption of 
tools that enable and access to claims data (https://www.
federalregister.gov/documents/2020/05/01/2020-05050/
medicare-and-medicaid-programs-patient-protection- 
and-affordable-care-act-interoperability). Existing applica-
tion programming interfaces enable payer-to-patient access 
(e.g., Blue Button technology [https://bluebutton.cms.gov/]), 
payer-to-provider access (e.g., Beneficiary Claims Data appli-
cation programming interfaces for accountable care orga-
nization access [https://bcda.cms.gov]; Data at the Point of 
Care or Physician access [https://dpc.cms.gov, in pilot stage]), 
and provider-to-provider access (e.g., Epic’s Care Everywhere 
[https://www.epic.com/interoperability/ehr-interoperabil-
ity-from-anywhere]). These application programming inter-
faces and the electronic health records of the local institution 
(for the current medical history) allow users to access or con-
struct the claims stream for our predictors and clinical sup-
port software. We anticipate that these policies will help drive 
access to claims data from multiple additional payer organi-
zations and facilitate more widespread practical access to the 
predictive models based on administrative claims.

As an example, the models described in this manuscript 
are undergoing field testing at several major institutions, 
including the Cleveland Clinic (Cleveland, Ohio). While 
code latency could theoretically lead to underprediction of 
risk, real-time implementation of the models permits code 
feeds from multiple sources such as the Beneficiary Claims 
Data application programming interfaces (https://bcda.
cms.gov), which are updated weekly, or directly from local 
EPIC sources, which can update faster. Future research is 
needed to define whether using Risk Stratification Index 
3.0 predictive modeling at admission improves clinical effi-
ciency and patient outcomes.

In summary, we demonstrate that a suite of predictive 
Risk Stratification Index 3.0 models developed using a very 
large population of Medicare fee-for-service beneficiaries, 
mostly older than 65 yr, also performs well when applied 
prospectively to two large out-of-sample state datasets that 
include younger and healthier subjects.
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