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Artificial intelligence sepsis prediction algorithm learns to say
“I don’t know”
Supreeth P. Shashikumar 1✉, Gabriel Wardi2,3, Atul Malhotra3 and Shamim Nemati 1✉

Sepsis is a leading cause of morbidity and mortality worldwide. Early identification of sepsis is important as it allows timely
administration of potentially life-saving resuscitation and antimicrobial therapy. We present COMPOSER (COnformal
Multidimensional Prediction Of SEpsis Risk), a deep learning model for the early prediction of sepsis, specifically designed to reduce
false alarms by detecting unfamiliar patients/situations arising from erroneous data, missingness, distributional shift and data drifts.
COMPOSER flags these unfamiliar cases as indeterminate rather than making spurious predictions. Six patient cohorts (515,720
patients) curated from two healthcare systems in the United States across intensive care units (ICU) and emergency departments
(ED) were used to train and externally and temporally validate this model. In a sequential prediction setting, COMPOSER achieved a
consistently high area under the curve (AUC) (ICU: 0.925–0.953; ED: 0.938–0.945). Out of over 6 million prediction windows roughly
20% and 8% were identified as indeterminate amongst non-septic and septic patients, respectively. COMPOSER provided early
warning within a clinically actionable timeframe (ICU: 12.2 [3.2 22.8] and ED: 2.1 [0.8 4.5] hours prior to first antibiotics order) across
all six cohorts, thus allowing for identification and prioritization of patients at high risk for sepsis.
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INTRODUCTION
Sepsis is a dysregulated host response to infection causing life-
threatening organ dysfunction1. Approximately one in three
hospital deaths are attributable to sepsis2. While effective
protocols exist for treating sepsis3, challenges remain in early
and reliable detection of this condition4. In recent years, the
increased adoption of electronic medical records (EHRs) in
hospitals has motivated the development of machine learning-
based surveillance tools for detection5–9 and prediction10–15 of
sepsis. However, most existing published sepsis prediction
models16,17 are either based on data from a single hospital5,7–
10,13,15,18,19 or multiple hospitals from the same healthcare
system11,14 where the care processes are mostly standardized.
Three major barriers to the regulatory approval20 and wide-
spread adoption of these systems are (1) lack of generalizability
across institutions, (2) high false alarm rates, and (3) risk of
automation bias, wherein users tend to over-rely on the system
output instead of active information seeking and risk assess-
ment21,22. One of the main factors contributing to an
algorithm’s performance degradation (including increased false
alarm and missed-detection rate) across sites is the data
distribution shift (encountering unfamiliar patients) and varia-
tions in levels of data missingness caused by differences in
hospital workflow and practices23,24. Moreover, a recent study
demonstrated that detecting outlier cases and showing users
an outlier focused message better enabled them to detect and
correct for potential spurious predictions by an AI model25.
However, while recent literature has emphasized the impor-
tance of including clear ‘indication of use’ labels with machine
learning algorithms26, none of the existing sepsis prediction
algorithms include a built-in mechanism for detecting outliers
and for establishing the ‘condition for use’ of the model across
geographical and temporal domains.

In this work, we propose COMPOSER (Conformal Multi-
dimension Prediction of Sepsis Risk), a deep learning model
designed to predict onset of sepsis 4–48 h prior to time of
clinical suspicion. COMPOSER achieves improved generalizabil-
ity and low false alarm rates through a prediction scheme that
statistically determines conformity with a predefined collection
of representations (aka conformal set), as a means to establish
the ‘conditions for use’ of the algorithm under unseen
prediction scenarios including new patient populations and
different levels of data quality and missingness. The proposed
COMPOSER model consists of three modules. The first module
makes use of clinical variables and timing information about
measurements to generate lower dimensional representations
that are robust to patterns of data missingness and institution-
specific workflow practices27,28. The second module includes a
conformal prediction29–32 network, which provides a statistical
framework for detecting out-of-distribution (i.e., indeterminate)
samples during the risk assessment phase in a deployment
environment. Two bags of data representations (aka, conformal
sets) are used to quantify explicitly the conformity of new
patient-level feature vectors to the previously seen examples of
septic and non-septic feature vectors within the development
cohort. The conformal prediction allows the model to detect
outlier inputs that do not satisfy the conditions for use of the
algorithm, which are subsequently assigned to an indeterminate
predicted label class. Supplementary Fig. 3 provides an
illustration of scenarios under which a test sample is accepted
or rejected by the conformal prediction module. The third
module includes a sepsis predictor that is a feedforward neural
network followed by a logistic regression. Figure 1b provides
the overall schematic diagram of COMPOSER during the
evaluation phase.
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RESULTS
Study population and evaluation
COMPOSER was trained and evaluated on six patient cohorts
(515,720 patients) across two academic medical centers
(Hospital A, Hospital B) in the US, including three ICU cohorts
and three ED cohorts collected between 2016 and 2020. The
patient characteristics of all the six cohorts have been tabulated
in Supplementary Tables 2 and 3. Patients in the Hospital-A ICU
and ED cohorts were randomized across training (80%) and
testing (20%) sets. The entire Hospital-A Temporal ICU and ED,
and Hospital-B ICU and ED cohorts were used for temporal and
external validation respectively. Patients 18 years or older were
followed throughout their stay until time of first episode of
sepsis or otherwise time of transfer out of their current unit (ICU
or ED depending on the cohort). Sepsis was defined according
to the latest International Consensus Definitions for Sepsis
(Sepsis-3)1,33.
More details about the development of COMPOSER can be

found in the Methods section. We evaluate the performance of
this model on six patient cohorts, using a modified Area Under the
Curve (AUC) metric evaluated under a clinically relevant protocol,
as described by Hyland et al.34 More Specifically, AUCs are
reported under an end-user clinical response policy in which the
model was silenced for 6 h after an alarm was fired, and alarms
fired 4–48 h prior to onset of sepsis were considered as true
alarms. Additionally, we report threshold-based performance
metrics (at a fixed sensitivity of 80%), with a focus on false alarms
and misdetections, using positive predictive value (PPV) and
negative predictive value (NPV), respectively.

Internal testing set
COMPOSER’s performance (AUC/PPV) on the source cohort ICU
and ED testing dataset was 0.953/38% and 0.945/20.1%,
respectively. COMPOSER was able to achieve this performance
while maintaining low false alarms (false alarms per patient hour
of 0.031 and 0.042; SPC of 93.0% and 93.5%). Supplementary
Figs. 6 and 7 show heatmaps of the top 15 variables contributing
to the increase in risk score up to 12 h prior to onset of sepsis. It
was observed that clinical variables related to sepsis (e.g.,
temperature, white blood count, heart rate) were identified as
the top contributing factors.

External validation
When applying COMPOSER to data from Hospital-B ICU
patients, compared to a baseline feedforward neural network

(FFNN) model, COMPOSER achieved roughly 85.5% relative
reduction in false alarms (FAPH of 0.043 versus 0.296; SPC of
90.7% vs 67.0%) while maintaining superior AUC and PPV (AUC
of 0.925 vs 0.910, p < 0.001; PPV of 24.3% vs 23.0%). Similarly,
within the Hospital-B ED cohort COMPOSER achieved roughly
77.9% relative reduction in false alarms (FAPH of 0.038 versus
0.172; SPC of 94.7% vs 82.1%) while maintaining superior AUC
and PPV (AUC of 0.938 vs 0.910, p < 0.001; PPV of 13.4%
vs 13.0%). See Fig. 2a–f for a comparison of COMPOSER’s
performance (PPV, NPV, DOR, SPC, AUC, and False alarms
per patient hour) vs the baseline FFNN model across all
cohorts.

Outlier detection and indeterminates
Overall 75–86% of the prediction windows (see Supplementary
Table 10 and Supplementary Table 11) satisfied the conditions
for use of the algorithm. However, within the septic windows
the percentage of indeterminate cases were almost half
compared to the non-septic windows (24.6–27.8% versus
12.4–13.9% for the ICU cohorts and 13.6–16.1% versus
6.5–9.9% for the ED cohorts). Moreover, patient-wise analysis
revealed that the median percentage of septic patients with all
septic windows rejected was 1.1% [0.87–2.6% IQR], indicating
that conformal prediction had minimal deleterious effect on the
patient-wise sensitivity of the algorithm.

Temporal validation
To assess the impact of changes in institutional practices and
patient populations over time we performed an experiment in
which a model trained on a combined cohort of ICU and ED
patients (which consisted of patients admitted from January
2016 through March 2019) from Hospital-A was applied to a
temporal validation set consisting of patients admitted to
Hospital-A from August 2019 through February 2020. COMPO-
SER achieved an AUC of 0.940 (PPV of 20.8%) on the Hospital-A
Temporal ED validation cohort and an AUC of 0.952 (PPV of
35.5%) on the Hospital-A Temporal ICU validation cohort (see
Table 2). COMPOSER was able to achieve this performance
while maintaining low false alarms; false alarms per patient
hour of 0.047 (SPC of 92.4%) and 0.029 (SPC of 93.6%) on the
temporal ED and ICU cohorts, respectively. This finding
suggested that the model was not adversely impacted by
changes in patient population or clinical practices over time.
Additionally, COMPOSER achieved roughly 78% relative reduc-
tion in false alarms in comparison to a commercially available

Fig. 1 Schematic diagram of COMPOSER. Two possible deployment schemes are shown in panel (a). During the evaluation phase of
COMPOSER (panel b), the input test data is first fed into the weighted input layer, and is then passed through the encoder (first module), after
which the method of conformal prediction is utilized to determine the ‘conditions for use’ (second module). This is achieved by comparing the
conformity of the new representation (H(2)) to the representations in the conformal set, which are carefully selected during the training phase
(see Methods section). If conformity can be achieved at a given confidence level (ε), H(2) is then forwarded to the sepsis predictor to obtain a
risk score (third module). In comparison, panel (c) shows a deployment scheme without the use of conformal prediction.
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sepsis prediction model (ESPM) in use at Hospital-A during the
same time period (FAPH of 0.132 vs 0.029) in the ICU. Moreover,
COMPOSER achieved significantly better alarm notification
lead-time, in advance of clinical suspicion of sepsis, compared
to the ESPM model (see Table 1).

Analysis of missed-detections
We observed that COMPOSER achieved high negative predictive
value across all the six cohorts (98.8–99.1% in ICU and 99.5–99.6%
in ED) when evaluated in a sequential prediction setting.
Additionally, it was also observed that COMPOSER made at least
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one positive prediction within the septic window in 91.3–92.3%
and 90.5–95.6% of septic patients in the ICU and ED cohorts
respectively. In other words, COMPOSER’s missed-detection rate
amongst septic patients was below 10% across all the six cohorts.
Thus mitigating concerns about deleterious effects of automation
bias; in particular, when used in association with the standard of
care and existing hospital workflow practices for identification of
sepsis.

DISCUSSION
We presented a generalizable deep learning model for the
continuous prediction of sepsis within a clinically actionable
window of 4–48 h in advance of clinical suspicion. Using
representation learning and conformal prediction allowed us to
introduce a formal procedure to detect outlier inputs (or
unfamiliar patients/situations) arising from erroneous data, miss-
ingness, distributional shift and data drifts, and thus establishing
the ‘conditions for use’ of the algorithm. COMPOSER was designed
to be locally interpretable wherein the model was capable of
identifying the most relevant features contributing positively or
negatively to the increase in risk score at every point in a patient’s
timeline. Finally, we show consistent performance across different
levels of care, hospitals, and retrospective and temporal validation
cohorts, demonstrating that our approach is broadly applicable to
different care settings.
By carefully constructing two conformal sets for the representa-

tion of septic and non-septic data points by, for example, varying
tolerance for missing data, conformal prediction was able to
control the rejection rate of septic and non-septic cases
independently. As such, labeling outlier inputs as indeterminate
resulted in relative reduction in the rate of false alarms in the
range 77–85% compared to baseline models, while keeping sepsis
missed-detection rates among the indeterminate cases close to
zero. In addition to the improved PPV, COMPOSER’s NPV remains
high (98.8% ICU and 99.5% ED), thus mitigating concerns around

potential missed-detections and automation bias when used in
parallel with the standard of care for detection of sepsis.
Both false positives and false negatives are cited by the U.S.

Food and Drug Administration as key factors for consideration
when making benefit-risk determination in Software as a Medical
Device (SaMD) Premarket Approvals and De Novo Classifica-
tion35,36. While false alarms have the potential to increase
caregiver’s cognitive burden and may expose patients to
unnecessary tests and treatments37, missed detections can also
cause harm if the potential of automation bias is not taken into
account during the implementation phase of an algorithm. For
example, a centralized implementation (‘command control’)18

which treats the algorithm as a second ‘pair of eyes’, when
deployed in parallel to standard of care, may mitigate some of the
concerns surrounding automation bias20,38. Nevertheless, bedside
implementation of such algorithms pose additional challenges.
For instance, higher than usual levels of data missingness may
result in a low score in a patient not exhibiting overt signs of
sepsis, which may create a false sense of confidence. Detection of
low quality data (e.g., due to high levels of data missingness) and
flagging them as indeterminate may reduce potential harm
caused by automation bias.
Recent literature has emphasized the importance of including

information on ‘uses and warnings’ with machine learning models,
which provide information such as model name, locale, version,
summary of the model, mechanism of risk score calculation,
validation and performance, uses and directions, warnings, and
other information26. However, to date, none of the existing sepsis
prediction algorithms include a built-in mechanism for detection
of outliers and for establishing the ‘condition for use’ of the model
across geographical and temporal domains. As currently there are
no legally marketed predicate machine learning-based sepsis
prediction SaMDs in the market36, there is an unmet need for
design of quality control criteria for clinical implementation and
successful regulatory approval of such algorithms. COMPOSER
utilizes a conformal prediction framework to explicitly quantify the

Fig. 2 Summary of COMPOSER performance. Comparison of COMPOSER model against GB-Vitala and a feedforward neural network (FFNNb).
The line plots in a–f shows the relative improvement in positive predictive value (PPV), negative predictive value (NPV), diagnostic odds ratio
(DOR), specificity (SPC), Area Under the Curve (AUC) and number of false alarms per patient hour (FAPH)+, respectively. The median and
interquartiles for all six cohorts (three ICUs and three EDs) are summarized via superimposed box plots. In comparison, ESPMc (not shown here)
achieved an AUC of 0.889 (PPV= 31.2%, NPV= 97.8%, DOR= 23.2, SPC= 84.3, FAPH= 0.132) and 0.876 (PPV= 35.9%, NPV= 96.8%, DOR=
17.4, SPC= 94.2%, FAPH= 0.05) across Hospital-A temporal ICU and ED. aGB-Vital corresponds to a Gradient Boosted Tree (XGBoost)6,15 built
using six vital signs measurements: systolic blood pressure, diastolic blood pressure, heart rate, respiratory rate, oxygen saturation and
temperature. bFFNN corresponds to a 2 layer feedforward neural network that uses the same number of input features as that of COMPOSER.
The starting point of y-axis for a and b were determined by the chance level of a classifier at the lowest prevalence rate. cESPM corresponds to
the Epic’s commercially available Best Practice Advisory (BPA) alert. We only had access to the risk scores produced by this system at Hospital-A
during the temporal validation time-frame. + False alarms per patient hour (FAPH) can be used to calculate the expected number of false
alarms per unit of time in a typical care unit (e.g., a FAPH of 0.025 translates to roughly 1 alarm every 2 h in a 20-bed care unit).

Table 1. Time from model prediction to clinical suspicion of infection.

Δtlactate (in hours) Δtsuspicion (in hours) ΔtABX (in hours) Δtculture (in hours)

Hospital-A Temporal ICU

COMPOSER 2 [0 7] 8.4 [1.2 11.5] 12.2 [3.2 22.8] 11.2 [5.2 11.9]

ESPM (score>5) 1 [0 5] 3.5 [0.2 11.2] 10.2 [1.0 18.9] 8.9 [1.2 11.9]

Hospital-A Temporal ED

COMPOSER 1 [1 2] 1.0 [0.3 2.3] 2.1 [0.8 4.5] 0.8 [0.2 3.4]

ESPM (score>5) 0 [−1 1] 0.1 [−0.9 0.65] 0.6 [0.2 2.0] 0.2 [−0.8 1.0]

The difference between the time at which an alarm (talarm) was fired (i.e., risk score exceeded a decision threshold) and tlactate /tsuspicion/tABX/tculture for the
Hospital-A Temporal ICU and ED cohorts are shown. talarm corresponded to the earliest time at which an alarm was fired in the interval [tsuspicion˗ 12 h, tsuspicion+
12 h]. tlactate corresponded to the earliest time at which a lactate measurement was made in the interval [tsuspicion˗ 12 h, tsuspicion+ 12 h]. tABX corresponded to the
time at which antibiotics were ordered following tsuspicion. tculture corresponded to the time at which cultures were ordered following tsuspicion. A negative value
indicates the alarm was fired after the time point of interest.
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conformity of new patient-level feature vectors to the previously
seen examples of septic and non-septic feature vectors within the
development cohort. As such, the proposed approach comple-
ments and extends the ‘intended use’39 and ‘model fact labels’26

of a machine learning algorithm, and provides a statistical
approach for detecting outliers and out-of-distribution data at a
finer resolution.
While we have demonstrated that flagging of indeterminate

cases results in significant reduction in false alarms, it is not readily
obvious how these indeterminate cases should be treated
differently by the end-user compared to episodes of low risk
score. To improve actionability, one may distinguish among
different categories of indeterminates as a component of an alarm
verification process40. Such categories may include indeterminate
cases with low vs. high risk scores, as well as, those with low vs.
high level of data missingness. Each such scenario may result in an
actionable set of recommendations (e.g., ordering of additional
labs). Furthermore, weekly or monthly statistics of rates of
indeterminacy can be used as a trigger to activate an algorithm
‘change protocol plan’41,42 in a systematic manner that manages
risks to patients (e.g., fine-tuning of the model on the target
population43). Nevertheless, recent literature demonstrates that
even simple flagging of outlier cases in complex machine learning
models (see Figure S10) is likely to enable the end-users to detect
and correct for potential model mistakes25.
Any algorithm designed to monitor longitudinally a rare event

(e.g., hourly prediction of sepsis) is bound to suffer from some
level of false alarms. Moreover, the gold-standard labels for sepsis
have limited temporal resolutions and the presence of competing
risk factors induce additional levels of diagnostic uncertainty. We
observed that roughly 50% of COMPOSER’s false alarms were
triggered on patients who satisfied at least one of the following six
conditions within 72 h of a false alarm: (1) presence of clinical
suspicion of infection without evidence of acute organ dysfunc-
tion, (2) need for vasopressors, (3) needing mechanical ventilation,
(4) at risk for acute kidney injury, (5) eventual transition to sepsis,
but not within 48 h of the alarms, and (6) risk for mortality or
needing hospice care (see Supplementary Table 8). As such,
improvements in differential prediction and prognostication are
needed to enhance further the actionability of such alarms.
In this work, due to limited availability of data we only focused

on ED and ICU care units. As such the current algorithm is not
optimized for non-ICU inpatient wards. It is known that the
frequency of EHR measurements is commonly a function of care
levels (e.g., emergency departments, ICUs, step-down units/
general wards, long-term care facilities, and nursing homes),
workflow practices, and patients’ severity of illness27. This situation
in turn has resulted in ‘data deserts’ in some settings and ‘data
deluge’ in others44. To maximize predictive performance within
different care settings, input to such algorithms could be enriched
with higher resolution data from wearable sensors, bedside
monitors and biomarkers for pathogen profiling and host
inflammatory response to infection. The proposed algorithm
provides a foundational building block for the design of future
generalizable and trustworthy prediction tools potentially useful in
other clinical syndromes and disease processes. A real-time HL7
FHIR45,46 compatible software pipeline has been developed to
enable interoperable multi-center deployment of this algorithm
(See Supplementary Note 10 for more details). Future work
includes performing prospective clinical trials to validate COMPO-
SER’s predictions in a real-time clinical setting. However, our
findings provide significant clinical evidence for a radical
improvement in early identification of sepsis, with significantly
lower false alarm rates, and has the potential to improve sepsis-
related clinical outcomes.

METHODS
Dataset description
We collected de-identified data from the EHR across different care-levels
and time-frames from two academic medical centers, the University of
California San Diego Health and Emory University Hospital, in the United
States to construct a total of six patient cohorts (total of 515,720
encounters). Throughout the manuscript, we refer to the respective
hospital systems as Hospital-A and Hospital-B. Supplementary Tables 2 and
3 contain detailed information regarding the six cohorts considered in this
study. Patients 18 years or older were followed throughout their stay until
time of first episode of sepsis or otherwise time of transfer out of a given
care unit (ICU or ED depending on the cohort). To allow for initial
examination and stabilization of patients and adequate data collection for
prediction purposes, we focused on sequential hourly prediction of sepsis
starting at hours two and four within our ED and ICU cohorts, respectively.
Patients who were identified as having sepsis prior to prediction start time
or those with no measurement of heart rate or blood pressure prior to the
prediction start time or those whose length of stay (ICU or ED depending
on the cohort) was more than 21 days were excluded.
The overall dataset was divided into the following cohorts: (1) training

cohort (80% of encounters from Hospital A ICUs and EDs, including over
13,000 ICU encounters and over 79,000 ED encounters), (2) testing cohort
(20% of the encounters from Hospital A ICUs and EDs), (3) temporal
validation cohort (prospectively collected encounters from Hospital A ICUs
and EDs), and (4) external validation cohort (retrospective data from
Hospital B ICUs and EDs). See Table 2 for a breakdown of patients used in
cohorts 2–4 for evaluation purposes after the model was trained on cohort
1 and was frozen. The Hospital-A training and testing cohorts were
collected between January 2016 and August 2019, and the temporal
validation cohort was collected between August 2019 through February
2020. The external validation cohort was collected between January 2014
to December 2018.
We followed the latest guidelines provided by the Third International

Consensus Definitions for Sepsis (Sepsis-3)1,33 which defined sepsis as a
life-threatening organ dysfunction caused by a dysregulated host response
to infection. As such, the two main criteria for establishing onset time of
sepsis included: (1) evidence of acute organ dysfunction, and (2) suspicion
of infection. Clinical suspicion of infection was defined by blood culture
draw and new start of intravenous (IV) antibiotics continued for >= 3
consecutive days (excluding prophylactic use) satisfying either of the
following conditions: (a) if a blood culture draw was ordered first, then
antibiotics order had to occur within the following 72 h, or (b) if antibiotics
order occurred first, then a blood culture draw had to occur within the next
24 h. Evidence of organ dysfunction was defined as an increase in the
Sequential Organ Failure Assessment (SOFA) score by two or more points.
In particular, evidence of organ dysfunction occurring 48 h before to 24 h
after the time of suspected infection was considered, as suggested in
Seymour et al.33. Finally, time of onset of sepsis was taken as the time of
clinical suspicion of infection.
This investigation was conducted according to University of California

San Diego IRB approved protocol #191098 and Emory University IRB
Protocol #00110675. A waiver of consent was granted by the IRB as this
was a retrospective study.

Model features
Consistent with the PhysioNet Sepsis Challenge 2019, a total of 40 clinical
variables (34 dynamic and 6 demographic variables, see Supplementary
Table 1) were extracted based on their association with the onset of sepsis
and their availability in EHR across the two hospitals considered in our
study11,12,14. These included vital signs measurements (heart rate, pulse
oximetry, temperature, systolic blood pressure, mean arterial pressure,
diastolic blood pressure, respiration rate, and end-tidal carbon dioxide),
laboratory measurements (bicarbonate, bicarbonate excess, fraction of
inspired oxygen, pH, partial pressure of carbon dioxide from arterial blood,
oxygen saturation from arterial blood, asparate transaminase, blood urea
nitrogen, alkaline phosphatase, calcium, chloride, creatinine, bilirubin
direct, serum glucose, lactate, magnesium, phosphate, potassium, total
bilirubin, troponin, hematocrit, hemoglobin, partial thromboplastin time,
leukocyte count, fibrinogen and platelets) and demographic variables (age,
gender, identifier for medical ICU unit, identifier for surgical ICU unit,
length of hospital stay, length of ICU stay). All vital signs and laboratory
variables were organized into 1-h non-overlapping time series bins to
accommodate for different sampling frequencies of available data. All the
variables with sampling frequencies higher than once every hour were
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uniformly resampled into 1-h time bins, by taking the median values if
multiple measurements were available. Variables were updated hourly
when new data became available; otherwise, the old values were kept
(sample-and-hold interpolation). Mean imputation was used to replace all
remaining missing values (mainly at the start of each record). Additionally,
for every vital signs and laboratory variable, their local trends (slope of
change), baseline value (mean value measured over the previous 72 h),
and the time since the variable was last measured (TSLM) were recorded.
Hereafter, we refer to the 34 dynamical variables and their local trends
(total of 102 features) by Xdynamical, the 34 TSLM features by XTSLM and the 6
covariate features by Xcovar, resulting in a total of 108 features.

Development of the COMPOSER model
COMPOSER consists of three modules. First, a weighted input layer that
scales the value of a clinical variable depending on the time since it was
last measured. Intuitively, this layer attempts to mimic a clinician’s thought
process of putting more importance on the most updated vitals and labs,
depending on the physiologically plausible rates at which such measure-
ments can change. As such, the weighted input layer was designed to
incorporate some information about the timing of clinical measurements
without allowing the network to exploit the correlation between frequency
of measurements and disease severity or patients’ level of care47. Such
factors are often affected by the institution-specific workflow practices and
care protocols and likely to reduce the generalizability of a predictive
algorithm. The output of this layer was fed into an encoder network (a feed
forward neural network) that is used to reduce data dimensionality. The
second module is a conformal predictor which is used to establish the
‘conditions for use’ of the model by statistically assessing the conformity of
any new test instance to a pre-constructed bag of examples (‘conformal
set’) drawn from the training set. The third module includes a sepsis
predictor, which is a feedforward neural network whose output is a
probability score (between 0 and 1) that represents the risk of sepsis. All
the modules are parametrized as neural networks and trained end-to-end,
and enable the application of local interpretability methods such as
relevance scores (RS) and layer-wise relevance propagation (LRP)48.
Conformal prediction enables the algorithm to determine the level of

data distribution shift, including data quality and missingness level, at
which the input data remains appropriate for prediction. The development
and evaluation of COMPOSER involved two steps: First, the first and the
second modules were trained using the combined Hospital-A ICU and ED
training sets. Second, the conformal set (consisting of representations from
the encoder module) was constructed from the combined Hospital-A ICU
and ED training sets. Finally, the trained modules along with the conformal
set were used for model evaluation. Each of the individual components of

COMPOSER, namely the weighted input layer and conformal prediction are
explained in detail in the following sections.

Weighted input layer
We designed a weighted input layer that scales the latest measured value
of a variable depending on the duration since it was measured. This scaling
enables the model to appropriately account for the age of an imputed
feature while constraining the model from directly exploiting the
frequency of measurements. The extent of scaling is controlled by a
parameter α that is learned from data. Let us consider Xn

t to be a centered
and standardized 68 dimensional vector (consisting of all dynamical
variables) at time t for patient n. Henceforth, with a slight abuse of notation
we will refer to Xn

t by X; wherein X ¼ x1; x2; ¼ :; x68½ �; xj 2 R. Next δj
corresponds to the duration since variable j was last measured (in
reference to the current time t). Each of the variables xj is then non-linearly
weighted based on the duration since it was last measured, to obtain
h1j ¼ xj � f ðδj ; αjÞ

� �
. The weighting function f ð:Þ is defined as follows:

f δj ; αj
� � ¼ 2 � 1� 1

1þ exp �α2j � δj
24

� �� �
0
@

1
A (1)

Where αj is a scaling factor for each of the dynamical variables and is
learned during the training of the model. Thus, the output of the weighted

input layer is a 68 dimensional feature vector Hð1Þ ¼ h11; h
1
2; ¼ ; h168

� �T
. The

scaling factors αj obtained at the end of model training is inversely related
to the extent of sample-and-hold interpolation that is useful for the i-th
variable.

Detecting distribution shift using conformal prediction
We used the method of conformal prediction29,31,32 to develop a statistical
test to determine whether a given data sample belongs to the data
distribution from which the training data was drawn and model
performance during training was high. A sepsis prediction is made on
the data sample only if it belongs to the training distribution of
COMPOSER, else the data sample is rejected and no sepsis prediction is

made. Two sets of size M of the representations Hð2Þ
i from the source

dataset (S) each containing only septic and non-septic examples,

respectively, are chosen as the trust sets τseptic ¼ fHð2Þ
1;septic;H

ð2Þ
2;septic;

¼ ;Hð2Þ
M;septicg and τnonseptic ¼ fHð2Þ

1;non�septic;H
ð2Þ
2;non�septic; ¼ ;Hð2Þ

M;non�septicg.
These conformal sets were selected by performing a grid search over
training examples based on their levels of missingness and cross entropy

Table 2. Summary of performance of COMPOSER on the (A) ICU and (B) ED cohorts when evaluated in a sequential prediction setting.

SEN SPC PPV NPV DOR AUC

(A) ICU cohorts

Hospital-A ICU test Na=3,406; Sa=767 (22.5%) 91.6a 93.0b 38.0b 98.8b 53.5b (1.088) 0.953

Nb=157,527; Sb=6499 (4.1%) 80.1b

Hospital-A Temporal ICU Na=3,596; Sa=733 (20.4%) 92.3a 93.6b 35.5b 99.0b 57.2b (1.090) 0.953

Nb=171,242; Sb=6156 (3.6%) 79.3b

Hospital-B ICU Na=45,812; Sa=7,913 (17.3%) 91.3a 90.7b 24.3b 99.1b 35.9b (1.027) 0.925

Nb=1,884,383; Sb=56,637(2.9%) 78.9b

(B) ED cohorts

Hospital-A ED test Na=19,807; Sa=1,624 (8.2%) 95.6a 93.5b 20.1b 99.5b 51.8b (1.109) 0.945

Nb=162,504 Sb=7691 (4.7%) 78.1b

Hospital-A Temporal ED Na=19,945; Sa=1,795 (9.0%) 96.0a 92.4b 20.8b 99.5b 49.2b (1.107) 0.940

Nb=158,045; Sb=8766 (5.5%) 80.0b

Hospital-B ED Na=330,299; Sa=14,454 (4.4%) 90.5a 94.7b 13.4b 99.6b 51.2b (1.031) 0.938

Nb=2,362,426; Sb=64032(2.7%) 70.5b

Decision threshold corresponding to 80% sensitivity on the Hospital-A training cohort (0.561 and 0.414 for the ICU and ED cohorts respectively).
N Number of patients within the cohort, S Number of septic patients.
aPatient-wise.
bhourly window-wise.
SEN Sensitivity, SPC Specificity, PPV Positive predictive value, NPV Negative predictive value, DOR Diagnostic odds ratio with 95% confidence interval.
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error (i.e., a non-septic case with high risk score and vice versa) and by
choosing the cut-offs for inclusion that achieved the highest F2 score;
since the cost of missing a septic event (missed detection) is considerably
higher than a false alarm, the conformal set was designed to emphasize
sensitivity over precision. During evaluation phase, the model was

presented with a test example Hð2Þ
Mþ1 for which the task of conformal

prediction was (1) to predict if the test example is drawn from the same
probability distribution as that of other examples in the either of the trust
sets τseptic and τnon-septic at a given confidence level (1−ε), and 2) if yes, the

test example Hð2Þ
Mþ1 was passed onto sepsis predictor to obtain the sepsis

risk score.

Hypothesis testing. First, we aimed to measure how likely it was that a
given sequence of examples were drawn from the same probability
distribution. We use the term p-value to measure the typicalness of a
sequence of examples (H*) wherein the p-value was computed using a

function p:H� ! ½0; 1�. For a given input H 2ð Þ
Mþ1 the p-value of H 2ð Þ

Mþ1 w.r.t
τseptic denoted by pðHMþ1; τ

septicÞ refers to typicalness of the sequence

H 2ð Þ
1;septic;H

2ð Þ
2;septic; ¼ ;H 2ð Þ

M;septic;H
2ð Þ
M;þ1

� �
(the sequence consists of all

examples in conformal set τseptic plus the given test example). If
p-value of a given test example is under some very low threshold (e.g.,
0.05), this would signify that such a sequence would only be generated
at most 5% of the time by any i.i.d process, and is unlikely to belong to
the probability distribution of the conformal set. In other words, the
hypothesis being tested says “All examples in the sequence

Hð2Þ
1;septic;H

ð2Þ
2;septic; ¼ ;H 2ð Þ

M;septic;H
ð2Þ
M;þ1

� �
belong to the same probability

distribution”, and the hypothesis is rejected if pðHMþ1; τ
septicÞ � ε for

some predetermined ε. The same procedure is repeated w.r.t τnon-septic

wherein pðHMþ1; τ
non�septicÞ is computed and the same hypothesis test is

performed.
The p-value function can be constructed by comparing how different

each example in the sequence is from all the other examples. This is
possible using the measure of nonconformity. The measure of
nonconformity intuitively corresponds to how atypical a sequence is,
and maps a bag of examples and one additional example to a scalar
ηi 2 R:

ηi ¼ A Hð2Þ
1 ; ¼ ;H 2ð Þ

i�1;H
ð2Þ
iþ1 ¼ ;Hð2Þ

Mþ1

n o
;Hð2Þ

i

� �
(2)

for each example Hð2Þ
i , thereby measuring how different it is from other

examples in the bag fHð2Þ
1 ; ¼ ;H 2ð Þ

i�1;H
ð2Þ
iþ1 ¼ ;Hð2Þ

Mþ1g. We use :f g to denote
a bag since the order in which examples appear in the sequence will not
have any impact on the non-conformity score ηi. In this work, the non-
conformity measure is computed as follows:

ηi ¼ A H 2ð Þ
1 ; ¼ ;H 2ð Þ

i�1;H
2ð Þ
iþ1 ¼ ;H 2ð Þ

Mþ1

n o
;H 2ð Þ

i

� �
¼

XMþ1

j¼1;j≠i
� H 2ð Þ

i :H 2ð Þ
j

H 2ð Þ
i

���
��� H 2ð Þ

j

���
���
(3)

The p-value of Hð2Þ
Mþ1 w.r.t the two conformal sets can now be

calculated as follows:

pðHMþ1; τ
septicÞ ¼ #fi ¼ 1; 2; 3; :::;M : ηi;septic � ηMþ1g

M
(4)

pðHMþ1; τ
non�septicÞ ¼ #fi ¼ 1; 2; 3; :::;M : ηi;non�septic � ηMþ1g

M
(5)

If conformity of the test example is achieved with either of the
conformal sets at a given significance level ε, i.e., pðHMþ1; τ

septicÞ> ε or

pðHMþ1; τ
non�septicÞ>ε, the test example Hð2Þ

Mþ1is passed onto the sepsis
predictor to make a prediction. We choose ε to be 0.05 in our analysis,

which translates to 95% confidence that the new test example Hð2Þ
Mþ1 is

not likely to be non-conformant to the conformal sets τseptic or τnon-septic.

Statistical methods and hypothesis testing
For all continuous variables, we have reported median ([25th–75th
percentile]). For binary variables, we have reported percentages. The area
under receiver operating characteristic (AUC) curves statistics, specificity

(SPC), positive predictive value (PPV), negative predictive value (NPV), and
diagnostic odds ratio (DOR) at a fixed threshold (corresponding to 80%
sensitivity level on the development cohort) were calculated to measure
the performance of the models. COMPOSER was designed as a notification-
only tool to predict onset time of sepsis 4 h in advance (‘ideal prediction
window’), no earlier than 48 h in advance (‘acceptable prediction window’)
and under a silencing policy (aka, ‘snooze’34). Specifically, AUCs were
reported under an end-user clinical response policy in which alarms fired
up to 48 h prior to onset of sepsis were considered as true alarms, and the
model was silenced for 6 h after an alarm was fired. Additionally, we have
reported false alarms per patient hour (FAPH) which can be used to
calculate the expected number of false alarms per unit of time in a typical
care unit (e.g., a FAPH of 0.025 translates to roughly 1 alarm every 2 h in a
20-bed care unit). The FAPH was calculated by dividing the total number of
false alarms by the total number of data points (sum of hourly time points
across all patients) in a given cohort. Statistical comparison of all AUC
curves was performed using the method of DeLong et al.49 Statistical
comparison of DOR was performed using the paired t-test. Additionally, as
a secondary end-point we considered the time from model prediction
(when the risk score crosses the prediction threshold) to sepsis for the ED
and ICU patient populations, since it’s possible to have a sepsis prediction
model with high performance but with no lead time (for instance by
incorporating treatment information as a feature in the model).
Given that the COMPOSER algorithm was designed to be generalizable, we

postulated that sensitivity and specificity of the COMPOSER score would not
vary significantly, assuming that the physiological characteristics of septic
compared to non-septic patients would remain similar, across the various
cohorts. Based on preliminary observations from our development dataset we
anticipated that at 80% sensitivity COMPOSER would achieve at least 90%
specificity across various cohorts. Additionally, we observed a sepsis (hourly
window-wise) incidence rate of roughly 3.0–4.0% in the ICU and 2.0–5.5% in
the ED. Plugging these incident rates into the standard equations for PPV (and
NPV) as a function of sensitivity and specificity yields approximate values in
the range of 20.0–25.0% (and NPV of 99.0–99.3%) in the ICU and 14.0–30.0%
(and NPV of 98.7–99.5%) in the ED, respectively. As such, we formed two
hypotheses for the ICU and ED populations as follows. We hypothesized that
across the various ICU patient cohorts, with 95% power (beta= 0.05; type-II
error) at an alpha of 5% (type-I error) with sufficient sample size50, we can
show that the COMPOSER score achieves at least 20% PPV and 98% NPV.
Similarly, we hypothesized that across the various ED patient cohorts, with
95% power (beta=0.05; type-II error) at an alpha of 5% (type-I error) with
sufficient sample size we can show that the COMPOSER score achieves at least
10% PPV and 98% NPV. (Please see Supplementary Note 8 for sample size
calculations). Additionally, we hypothesized that COMPOSER yields higher
AUC, PPV, NPV, and DOR compared to competing models (GB-Vital, baseline
FFNN, and ESPM models) as described next. All baseline models (including
GB-Vital) were trained using the same sepsis criteria for consistency. The only
exception was the ESPM risk model, since we only had access to the ESPM risk
scores in our electronic health record (not the actual model).

GB-Vital. This is a replication of the sepsis detection model as proposed
by Mao et al.6,15.The model corresponds to a gradient-boosted classifier of
decision trees built using six vital signs measurements: systolic blood
pressure, diastolic blood pressure, heart rate, respiratory rate, oxygen
saturation, and temperature.

FFNN. This model corresponds to a 2 layer feedforward neural network
(of size 40 and 25) that uses the same number of input features as that of
COMPOSER.

ESPM. This model corresponds to the Epic’s commercially available Best
Practice Advisory (BPA) alert51. We only had access to the risk scores
produced by this system at Hospital-A during the temporal validation time-
frame.

Data processing, training, and hyperparameters
First, the combined Hospital-A ICU and ED training set was standardized by
first applying normalization transformations, followed by subtracting the
mean and dividing by the standard deviation. Next, all remaining datasets
were normalized using exactly the same transformations utilized in the
training data. For handling missing data, we used a simple sample-and-
hold approach in all the datasets, with mean-imputation at the start of all
time series records.
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Weighted input layer. The scaling factors αi were all initialized to 1. Model:
The learning rates for encoder, sepsis predictor, and domain classifier were
set to 0.01. To minimize overfitting and to improve generalizability of the
model, L1–L2 regularization was used with L2 regularization parameter set
to 1e-3 for encoder and sepsis predictor, 1e-4 for domain classifier and L1
regularization parameter set to 1e-3 for encoder and sepsis predictor, 1e-4
for domain classifier. Mini-batch size for the source dataset was fixed at a
total of 10000 windows (50% septic windows, 50% non-septic windows).
Mini-batch size for the target dataset was set at 5000 windows. The
encoder, sepsis predictor, and domain classifiers were each composed of a
single layer neural network of dimensions 40, 25, and 25 neurons,
respectively. Both the sepsis predictor and domain classifier were further
followed by a fully connected layer and a softmax layer. Conformal
predictor: Threshold ε was set at 0.05. The conformal set consisted of an
equal proportion of septic windows and non-septic windows, optimized to
minimize the deleterious effects of examples with large numbers of
missingness on prediction performance. COMPOSER was trained for a total
of 500 epochs using Adam optimizer52, with early stopping. All hyper-
parameters of the model (number and size of layers for encoder-sepsis
predictor-domain classifier, learning rate, mini-batch size, L1 regularization
parameter, and L2 regularization parameter) were optimized using
Bayesian optimization on the validation set of the development site53.
All pre-processing of data was performed using Numpy54 with the rest of
the pipeline implemented using TensorFlow55.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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